metallurgical bonding
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 85)

H-INDEX

11
(FIVE YEARS 4)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Hangbiao Mi ◽  
Tao Chen ◽  
Zixin Deng ◽  
Shengchen Li ◽  
Jian Liu ◽  
...  

Laser cladding coating has many advantages in surface modification, such as a small heat-affected zone, and good metallurgical bonding. However, some serious problems such as pores, and poor forming quality still exist in the coating. To suppress these problems, a novel process of ultrasonic vibration-assisted laser cladding process was adopted to in-situ synthesize TiC/TiB composite ceramic coating on the surface of titanium alloy. Results showed that the introduction of ultrasonic vibration effectively improved the surface topography of the coating, reduced the number of pores in the coating, refined the crystal grains of the coating, decreased the residual tensile stress in the coating, and increased the micro-hardness of the coating. The tribological properties of the coating were significantly improved by the ultrasonic vibration, the wear resistance of the coating fabricated with ultrasonic vibration at power of 400 W increased about 1.2 times compared with the coating fabricated without ultrasonic vibration, and the friction coefficient decreased by 50%.


2022 ◽  
Vol 8 ◽  
Author(s):  
Feng Qin ◽  
Chunbo Zhang ◽  
Jun Zhou ◽  
Kai Xu ◽  
Qi Wang ◽  
...  

In recent years, studying the weldability of a dissimilar metal hybrid structure, with the potential to make full use of their unique benefits, has been a research hotspot. In this article, inertia friction welding was utilized to join Φ130 forged ring of 2219 aluminum alloy with 304 stainless steel. Optical observation (OM), electron back scattering diffraction (EBSD), and scanning electron microscopy (SEM) were utilized to examine the joint microstructure in depth. Depending on the research, a significant thermal–mechanical coupling effect occurs during welding, resulting in inadequate recrystallization on aluminum-side thermo-mechanically affected zone (TMAZ) and forming zonal features. The crystal orientation and grain size of each TMAZ region reflect distinct differences. On the joint faying surface, the growth of intermetallic compounds (IMCs) is inhibited by a fast cooling rate and metallurgical bonding characteristics were found depending on the discontinuous distribution of IMCs. The average joint tensile strength can reach 161.3 MPa achieving 92.2% of 2219-O; fracture occurs on aluminum-side base metal presenting ductile fracture characteristics.


2021 ◽  
Vol 63 (12) ◽  
pp. 1097-1103
Author(s):  
M. Bakkiyaraj ◽  
A. K. Lakshminarayanan ◽  
S. Yuvaraj ◽  
P. K. Nagarajan

Abstract Dissimilar (AA6061 & AA7075-T6) friction welded aluminum joints were taken into the investigation to correlate the influences of friction time on tensile and metallurgical properties. The dissimilar metals were welded by varying the friction time from 2 s to 6 s with the following constant parameters: a rotating speed of 1200 rpm, friction pressure of 35 MPa, upset pressure of 35 MPa, and upset time of 3 s. The higher friction time during joint fabrication needs to be selected to attain good metallurgical bonding between rubbing surfaces. The highest tensile strength of 228 MPa was attained when the friction time was given as 4 s. Furthermore, the increase in friction time widened the width and reduced the hardness of the heat affected zone on the AA6061 side where joint failure occurred. Finally, the metallurgical features of the dissimilar specimens were characterized using optical microscopy, scanning electron microscopy, and X-ray diffraction. Other details related to the characterization and results of the testing were recounted.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meng Ying ◽  
Chun Guo ◽  
Yun Li ◽  
Tai Yu Kang ◽  
Wu Meng Liu ◽  
...  

This work describes the wire arc additive manufacturing (WAAM) approach used to fabricate parts from wear-resistant steel. The microstructure, crystal structures, and mechanical properties of the resulting samples were thoroughly analyzed. The wear-resistant steel parts demonstrated good forming, no internal defects, good metallurgical bonding, and excellent wear resistance. The metallographic analysis confirmed that the main phase was ferrite. The microhardness of the sample along its cross section was uniform in both horizontal and vertical directions and equals to 464.7HV0.2 and 482.4 HV0.2, respectively. The average values of tensile strength, elongation ratio, and room temperature Charpy shock were equal to 945.3 MPa, 4.3%, and 5 J, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1401
Author(s):  
Qingxian Hu ◽  
Xiaoli Wang ◽  
Xinwang Shen ◽  
Zemin Tan

The microstructure and corrosion resistance of samples fabricated by Q345 and 308 bimetallic feedings using two kinds of processes of wire-arc additive manufacturing (WAAM) was observed and compared with that of sample manufactured by a single feeding wire of Q345 or 308. The results show that the interface between the Q345 and 308 had no defects and metallurgical bonding. The hardness of bimetal Q345/308 additive manufacturing samples was higher than that of Q345 or 308 single wire additive manufacturing. The sample made of Q345 single wire had serious electrochemical corrosion, while the sample made of 308 single wire had pitting corrosion. The pitting corrosion of the sample reinforced by bimetal Q345/308 feeding wires was improved.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022024
Author(s):  
Chenghong Duan ◽  
Yinzhou Zhang ◽  
Xiangpeng Luo

Abstract 12CrNi2 alloy steel was prepared by Laser Melting Deposition (LMD) technology, and the effect of powder feeding rate on surface quality, internal defects, microstructure, and microhardness of the single track and manufactured part were investigated. The results show that the metallurgical bonding of the single track deteriorates, the surface quality of the manufactured part is improved, the average microhardness of the manufactured part increases, and the number of pores first decreases and then increases with the increase of powder feeding rate. At the lower powder feeding rate, the manufactured parts have larger pore defects, while at the higher powder feeding rate, the manufactured parts have poor fusion defects. The main phase composition of the manufactured parts is ferrite(F), granular bainite (GB), and pearlite(P), and the manufactured part has finer grains at the higher powder feeding rate.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1715
Author(s):  
Sara Ferraris ◽  
Antonio Santostefano ◽  
Antonio Barbato ◽  
Roberto Molina ◽  
Graziano Ubertalli

An emerging and still poorly explored application of aluminum foams is their potential use as permanent cores (inserts) in the casting of aluminum alloys. In this context, Al-based foams can introduce a weight reduction, the obtainment of cavities, a strength increase, the ability to absorb impact energy and vibration, acoustic insulation ability, the possibility to simplify the technological processes (no removal/recycling of traditional sand cores), and finally, they can be fully recyclable. Cymat-type Al foams with thin outer skin were used as permanent cores in Al-alloy gravity casting in the present research. Al-foams were characterized in terms of porosity, density, cell wall and skin thickness, surface chemical composition and morphology, and compression resistance. Cast objects with foam inserts were characterized by means of optical microscopy. The preservation of up to 50% of the initial porosity was observed for foam inserts with higher density. Metallurgical bonding between the foam core and the cast metal was observed in some regions.


2021 ◽  
Author(s):  
Elisa Fracchia ◽  
Mario Rosso

Nowadays, aluminium alloys are adopted mainly to produce engineering and automotive components. The present investigation aims to design, cast and characterize novel functionally graded materials (FGMs) produced using Al-Mg and Al-Si alloys by gravity casting technique. Alloys were sequentially cast into a mould to obtain an FGM to realizing great mechanical and metallurgical bonding. Zn addition was further performed in FGM to increase the mechanical properties, thanks to the nucleation of the intermetallic phases MgZn2. Castings were subsequently mechanically tested by tensile tests, bending tests, hardness and microhardness measures to assess the products\' quality. Microstructural characterizations were performed along the FGM to assess the metallurgical bonding and evaluate the microstructures obtained. Fracture, microstructural and compositional analysis will highlight the quality of this new FGM proposed. Possible applications of these materials are suggested, as automotive pistons or structural components.


2021 ◽  
Author(s):  
Mengwu Wu ◽  
Jinpeng Yang ◽  
Feng Huang ◽  
Lin Hua ◽  
Shoumei Xiong

Abstract A practical bimetallic casting consisting of aluminum matrix and cast iron inserts was manufactured via high pressure die casting (HPDC) process. Different surface treatment methods of the cast iron inserts, including salt membrane plating and electrogalvanizing, were adopted to improve the bonding quality of bimetallic castings. Microstructure characterization on the bonding interface was conducted at different locations of bimetallic castings. Results indicate that compounds with flawless and continuously metallurgical bonding interface can be successfully fabricated by the HPDC process with the zinc rack plating treatment on the surface of cast iron inserts which results in a dense zinc coating with an average thickness of 8 μm. The melt flow speed and heat transition during solidification of the HPDC process are two key factors in determining the bonding integrity of bimetallic castings. With the dissolution and diffusion of the very thin zinc coating during solidification, there is no obvious aggregation of zinc element at the metallurgical bonding interface. Instead, a reaction layer with an irregular tongue-like morphology is formed with an average thickness of approximately 1 μm while it mainly consists of intermetallic phases Al60Cu30Fe10 and Al2FeSi, etc.


Sign in / Sign up

Export Citation Format

Share Document