stainless steel 316l
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 241)

H-INDEX

34
(FIVE YEARS 8)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongzhou Peng ◽  
Wei Wang ◽  
Haomiao Jiang ◽  
Rui Zan ◽  
Yu Sun ◽  
...  

With recent progress in clinical trials and scale-up applications of biodegradable magnesium-based implants, the scenarios of transplanting biodegradable Mg with other non-degradable metals may occur inevitably. Galvanic corrosion appears between two metallic implants with different electrochemical potentials and leads to accelerated degradation. However, a quantitative measurement on the galvanic corrosion of Mg in contact with other metallic implants has not been conducted. Here we study the corrosion behaviors and mechanical attenuation of high purity magnesium (Mg)in contact with stainless steel (316L), pure titanium (TA2), and magnesium alloy (AZ91) respectively to form different galvanic couples in simulated body fluids. The results show that all of these three heterogeneous metal pairs accelerate the degradation of high purity Mg to different degrees, yielding declined tensile strength and mechanical failure after 4 days of immersion. Our observations alert the potential risk of co-implanting different metallic devices in clinical trials.


2021 ◽  
Author(s):  
Anwar Ul-Hamid

Abstract Nitrides, carbides, and carbonitrides of transition metal elements like Zr, W, Ti, etc. are generally employed to produce hard coatings. Zirconium-based hard coatings have shown useful applications in the areas of tribology, biomedicine and electrical due to their high thermal stability, hardness, biocompatibility, good erosion, wear, and corrosion resistance. In this study, we created homogeneous and tenacious nanostructured hard coatings based on Zr with good mechanical properties. The magnetron sputter deposition technique was utilized to coat stainless steel 316L substrates with multilayers of Zr/ZrN and ZrN/ZrCN with individual layer thicknesses of 250 and 500 nm for each coating composition. The deposition conditions were adjusted to create two different coating thicknesses of 2 and 3 µm. The thickness of the coating was confirmed using Calotest and the coatings’ morphology and elemental composition were determined utilizing the atomic force microscope and scanning electron microscope equipped with energy dispersive x-ray spectrometer. Coating thickness and adhesion were measured using cross-sectional samples and XRD was utilized to analyze the coatings structure. Nanoindenter was employed to determine the instrumental nanoindentation hardness and elastic modulus. The influence of coating thickness on tribological behavior was further investigated using the ratio of nanohardness-to-elastic modulus (H/E). No evidence of decohesion was observed at the substrate/coatings interface, and the grains of all the coatings were observed to show columnar growth which were homogeneous, compact and dense. The grains of the ZrN/ZrCN coatings were observed to be denser, finer and more compact compared to those of the Zr/ZrN coatings. Correspondingly, higher hardness, modulus and H/E values were exhibited by ZrN/ZrCN than Zr/ZrN coatings. This suggests that the ZrN/ZrCN coatings are capable of exhibiting better wear resistance and fracture toughness. The coatings developed in this investigation are anticipated to be suitable for applications in tribology due to their excellent hardness and H/E properties.


2021 ◽  
pp. 088391152110635
Author(s):  
Zahra Sadeghinia ◽  
Rahmatollah Emadi ◽  
Fatemeh Shamoradi

In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness ( Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7554
Author(s):  
Muhammad Imam Ammarullah ◽  
Ilham Yustar Afif ◽  
Mohamad Izzur Maula ◽  
Tri Indah Winarni ◽  
Mohammad Tauviqirrahman ◽  
...  

The selection of biomaterials for bearing in total hip arthroplasty is very important to avoid various risks of primary postoperative failure for patients. The current investigation attempts to analyze the Tresca stress of metal-on-metal bearings with three different materials, namely, cobalt chromium molybdenum (CoCrMo), stainless steel 316L (SS 316L), and titanium alloy (Ti6Al4V). We used computational simulations using a 2D axisymmetric finite element model to predict Tresca stresses under physiological conditions of the human hip joint during normal walking. The simulation results show that Ti6Al4V-on-Ti6Al4V has the best performance to reduce Tresca stress by 45.76% and 39.15%, respectively, compared to CoCrMo-on-CoCrMo and SS 316L-on-SS 316L.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012012
Author(s):  
Marcie Vandever ◽  
Ragavanantham Shanmugam ◽  
Monsuru Ramoni ◽  
Peter Romine ◽  
Harry Whiting

Abstract The objective of this research is to compare the microstructure and mechanical behavior of 3D printed SS 316L using near net shaped and fully embedded manufacturing extraction techniques. Research findings will allow us to determine if two different manufacturing extraction methodologies of a 3D printed stainless steel part will affect the overall performance of test specimens. Research will implement advanced manufacturing, part designing, part modeling, part simulation, part production, CT X-ray scanning, material characterization, and material testing. Printing of test specimens will be done with a Optomec Lens 3D Hybrid Machine Tool Direct Energy Deposition (DED) metal printer. The DED metal printer will be used for prototype printing and printing test samples. The areas of study will also include modeling and design using SolidWorks CAD software. A comparison of printing orientation/configuration, internal composition, and testing of material structure in the areas of stress to complete failure of test specimens. The internal structure analysis will observe the porosity effects of 3D metal printing with near net shaped and cocoon style print parameters. The study will also address the amount of time, production, strength, composition, and overall performance of SS 316L printed material.


Author(s):  
Venkata Krishnan Sampath ◽  
Praveen Silori ◽  
Parth Paradkar ◽  
Stanislau Niauzorau ◽  
Aliaksandr Sharstniou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document