Characterization of Functionally Graded Materials Based on Inconel 718 and Stainless Steel 316L Manufactured by DED Process

Author(s):  
Jan Džugan ◽  
Daniel Melzer ◽  
Martina Koukolíková ◽  
Jaroslav Vavřík ◽  
Mohsen Seifi
2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Dongjiang Wu ◽  
Xiaokang Liang ◽  
Qian Li ◽  
Lijia Jiang

Two patterns of functionally graded materials (FGMs) were successfully fabricated whose compositions gradually varied from 100% stainless steel 316L to 100% Inconel718 superalloy using laser engineered net shaping process. The microstructure characterization, composition analysis, and microhardness along the graded direction were investigated. The comparison revealed the distinctions in solidification behavior, microstructure evolution of two patterns. In the end, the abrasive wear resistance of the material was investigated.


2014 ◽  
Vol 802 ◽  
pp. 120-124 ◽  
Author(s):  
Vera Lúcia Arantes ◽  
Leonardo Grajales Agudelo ◽  
Pedro Luiz di Lorenzo

Functionally graded materials (FGM) based on stainless steel and ceramic materials have inspired researchers to combine properties and features which are not present in conventional composites, and are considered to be an alternative in the production of motors parts, cutting tools and coatings for reactors. The addition of metal and ceramic in a graded structure allows the integration of distinct properties that combine advantages of metallic and ceramic materials. Ceramic components withstand high temperatures and present high corrosion resistance, while metallic ones provide higher mechanical resistance, in particular ultimate tensile strength and fracture toughness. In this work, composites with variable levels of 316 Stainless Steel and Ytria-stabilized Zirconia, were prepared and characterized, in order to determine the thermal behavior of each composition, aiming the optimization of sintering of pieces with chemical composition gradation.


2008 ◽  
Vol 587-588 ◽  
pp. 400-404
Author(s):  
P. Pinto ◽  
L. Mazare ◽  
Delfim Soares ◽  
F.S. Silva

The Incremental Melting and Solidification Process (IMSP) is a relatively new field for material processing for the production of functionally graded materials. In this process a controlled liquid bath is maintained at the top of the component where new materials are added changing the components composition. Thus, a functionally graded material is obtained with a varying composition along one direction of the component. This paper deals with the influence of one of the process parameters, namely displacement rates between heating coil and mould, in order to evaluate its influence on both metallurgical and mechanical properties of different Al-Si alloys. Hardness and phase distribution, along the main castings axis, were measured. To better assess and characterize the process, two different Al-Si alloys with and without variation of chemical composition along the specimen were analysed. Results demonstrate that a gradual variation of metallurgical and mechanical properties along the component is obtained. It is also shown that Al-Si functionally graded materials can be produced by the incremental melting and solidification process. Results show that the displacement rate is very important on metallurgical and mechanical properties of the obtained alloy.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1923
Author(s):  
Bruna Horta Bastos Kuffner ◽  
Patricia Capellato ◽  
Larissa Mayra Silva Ribeiro ◽  
Daniela Sachs ◽  
Gilbert Silva

Metallic biomaterials are widely used for implants and dental and orthopedic applications due to their good mechanical properties. Among all these materials, 316L stainless steel has gained special attention, because of its good characteristics as an implantable biomaterial. However, the Young’s modulus of this metal is much higher than that of human bone (~193 GPa compared to 5–30 GPa). Thus, a stress shielding effect can occur, leading the implant to fail. In addition, due to this difference, the bond between implant and surrounding tissue is weak. Already, calcium phosphate ceramics, such as beta-tricalcium phosphate, have shown excellent osteoconductive and osteoinductive properties. However, they present low mechanical strength. For this reason, this study aimed to combine 316L stainless steel with the beta-tricalcium phosphate ceramic (β-TCP), with the objective of improving the steel’s biological performance and the ceramic’s mechanical strength. The 316L stainless steel/β-TCP biocomposites were produced using powder metallurgy and functionally graded materials (FGMs) techniques. Initially, β-TCP was obtained by solid-state reaction using powders of calcium carbonate and calcium phosphate. The forerunner materials were analyzed microstructurally. Pure 316L stainless steel and β-TCP were individually submitted to temperature tests (1000 and 1100 °C) to determine the best condition. Blended compositions used to obtain the FGMs were defined as 20% to 20%. They were homogenized in a high-energy ball mill, uniaxially pressed, sintered and analyzed microstructurally and mechanically. The results indicated that 1100 °C/2 h was the best sintering condition, for both 316L stainless steel and β-TCP. For all individual compositions and the FGM composite, the parameters used for pressing and sintering were appropriate to produce samples with good microstructural and mechanical properties. Wettability and hemocompatibility were also achieved efficiently, with no presence of contaminants. All results indicated that the production of 316L stainless steel/β-TCP FGMs through PM is viable for dental and orthopedic purposes.


Sign in / Sign up

Export Citation Format

Share Document