scholarly journals Fault Detection by Signal Reconstruction in Nuclear Power Plants

2021 ◽  
Author(s):  
Ibrahim Ahmed ◽  
Enrico Zio ◽  
Gyunyoung Heo

In this work, the recently developed auto associative bilateral kernel regression (AABKR) method for on-line condition monitoring of systems, structures, and components (SSCs) during transient process operation of a nuclear power plant (NPP) is improved. The advancement enhances the capability of reconstructing abnormal signals to the values expected in normal conditions during both transient and steady-state process operations. The modification introduced to the method is based on the adoption of two new approaches using dynamic time warping (DTW) for the identification of the time position index (the position of the nearest vector within the historical data vectors to the current on-line query measurement) used by the weighted-distance algorithm that captures temporal dependences in the data. Applications are provided to a steady-state numerical process and a case study concerning sensor signals collected from a reactor coolant system (RCS) during start-up operation of a NPP. The results demonstrate the effectiveness of the proposed method for fault detection during steady-state and transient operations.

2006 ◽  
Vol 321-323 ◽  
pp. 441-444
Author(s):  
Heung Seop Eom ◽  
Sa Hoe Lim ◽  
Jae Hee Kim ◽  
Young H. Kim ◽  
Hak Joon Kim ◽  
...  

This study was aimed at developing an effective method and a system for on-line health monitoring of pipes in nuclear power plants by using ultrasonic guided waves. For this purpose we developed a multi-channel ultrasonic guided wave system for a long-range inspection of pipes and a few techniques which can effectively find defects in pipes. To validate the developed system we performed a series of experiments and analyzed the results.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 222 ◽  
Author(s):  
Magdalena Jaremkiewicz ◽  
Dawid Taler ◽  
Piotr Dzierwa ◽  
Jan Taler

In both conventional and nuclear power plants, the high thermal load of thick-walled elements occurs during start-up and shutdown. Therefore, thermal stresses should be determined on-line during plant start-up to avoid shortening the lifetime of critical pressure elements. It is necessary to know the fluid temperature and heat transfer coefficient on the internal surface of the elements, which vary over time to determine transient temperature distribution and thermal stresses in boilers critical pressure elements. For this reason, accurate measurement of transient fluid temperature is very significant, and the correct determination of transient thermal stresses depends to a large extent on it. However, thermometers used in power plants are not able to measure the transient fluid temperature with adequate accuracy due to their massive housing and high thermal inertia. The article aims to present a new technique of measuring transient superheated steam temperature and the results of its application on a real object.


Author(s):  
Brian J. Voll

Piping steady-state vibration monitoring programs were implemented during preoperational testing and initial plant startup at most nuclear power plants. Evaluations of piping steady-state vibrations are also performed as piping and component failures attributable to excessive vibration are detected or other potential vibration problems are detected during plant operation. Additionally, as a result of increased flow rates in some piping systems due to extended power uprate (EPU) programs at several plants, new piping steady-state vibration monitoring programs are in various stages of implementation. As plants have aged, pipe wall thinning resulting from flow accelerated corrosion (FAC) has become a recognized industry problem and programs have been established to detect, evaluate and monitor pipe wall thinning. Typically, the piping vibration monitoring and FAC programs have existed separately without interaction. Thus, the potential impact of wall thinning due to FAC on piping vibration evaluations may not be recognized. The potential effects of wall thinning due to FAC on piping vibration evaluations are reviewed. Piping susceptible to FAC and piping susceptible to significant steady-state vibrations, based on industry experience, are identified and compared. Possible methods for establishing links between the FAC and vibration monitoring programs and for accounting for the effects of FAC on both historical and future piping vibration evaluations are discussed.


1995 ◽  
Vol 42 (4) ◽  
pp. 1406-1418 ◽  
Author(s):  
Seong Soo Choi ◽  
Ki Sig Kang ◽  
Han Gon Kim ◽  
Soon Heung Chang

Sign in / Sign up

Export Citation Format

Share Document