scholarly journals Plasmonic Nanostructures as Surface-Enhanced Raman Scattering (SERS) Substrate for Protein Biomarker Sensing

Author(s):  
Dan Li ◽  
Yuling Wang
2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1426 ◽  
Author(s):  
Karel Kouba ◽  
Jan Proška ◽  
Marek Procházka

Surface-enhanced Raman scattering (SERS) sensors are constructed from metallic plasmonic nanostructures providing high sensitivity and spectral reproducibility. In many cases, irradiation of the SERS substrate by the laser beam leads to an increase of the local temperature and consequently to thermal degradation of metallic nanostructure itself and/or adsorbed analyte. We report here a “bottom-up” technique to fabricate new thermally resistant gold “film over nanosphere” (FON) substrates for SERS. We elaborated the simple and straightforward method of preparation of homogeneously and closely packed monolayer of SiO2 nanoparticles (50 nm in diameter) and covered it by a thin (20 nm) layer of magnetron-sputtered gold. The spectral testing using biologically important molecules (methylene blue, cationic porphyrin, and fungicide 1-methyl-1H-benzimidazole-2-thiol) proved a sensitivity and reproducibility of our AuSiO2 substrates. The main advantage of such SERS-active substrates is high thermal stability and low intensity of background and signal of graphitic carbon.


The Analyst ◽  
2021 ◽  
Author(s):  
Yanjia Jiang ◽  
Huimin Sun ◽  
Chenjie Gu ◽  
Yongling Zhang ◽  
Tao Jiang

There is a growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge of the pretreatment-free detection and degradation of hazardous molecules in organic...


2014 ◽  
Vol 26 (15) ◽  
pp. 2352-2352 ◽  
Author(s):  
Manohar Chirumamilla ◽  
Andrea Toma ◽  
Anisha Gopalakrishnan ◽  
Gobind Das ◽  
Remo Proietti Zaccaria ◽  
...  

NANO ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. 1750131 ◽  
Author(s):  
Jian Chen ◽  
Peitao Dong ◽  
Chaoguang Wang ◽  
Chenyu Zhang ◽  
Junfeng Wang ◽  
...  

A simple method for improving surface-enhanced Raman scattering (SERS) performance of aligned silver nanorod (Ag NR) array was investigated. This method was to construct a kind of hybrid substrate by grafting Au@Ag core–shell nanoparticles (NPs) into Ag NR array using poly(2-vinylphridine) (P2VPy) as a bridging agent. The hybrid substrate yielded excellent SERS performance as its detection limit improved from 10[Formula: see text] M to 10[Formula: see text] M using trans-1,2-bis(4-pyridyl)ethylene (BPE) as probe molecule, which was increased by two orders of magnitude compared with Ag NR array substrate. The significant improvement of SERS performance of Ag NR arrays was attributed to the addition of Au@Ag core–shell NPs. As a result of surface plasmon resonance generated by the interaction of electromagnetic (EM) (IAEM) filed between NP and NR structures, increasing hotspots were found at the connections of NPs and NRs, the gaps of adjacent rods, and the gaps of two particles consequently. These results were validated by the finite difference time domain (FDTD) calculation. Besides, hybrid substrate shows good performance in stability and reproducibility. The proposed method was simple and robust, which promoted SERS performance of Ag NR array effectively, showing great potential in the application of SERS substrate fabrication and SERS-based bio-chemical sensing.


2019 ◽  
Vol 73 (6) ◽  
pp. 665-677 ◽  
Author(s):  
Raymond A. Velez ◽  
Nickolay V. Lavrik ◽  
Ivan I. Kravchenko ◽  
Michael J. Sepaniak ◽  
Marco A. De Jesus

The use of nanomachining methods capable of reproducible construction of nano-arrayed devices have revolutionized the field of plasmonic sensing by the introduction of a diversity of rationally engineered designs. Significant strides have been made to fabricate plasmonic platforms with tailored interparticle gaps to improve their performance for surface-enhanced Raman scattering (SERS) applications. Over time, a dichotomy has emerged in the implementation of SERS for analytical applications, the construction of substrates, optimization of interparticle spacing as a means to optimize electromagnetic field enhancement at the localized surface plasmon level, and the substrate sensitivity over extended areas to achieve quantitative performance. This work assessed the enhancement factor of plasmonic Ag/SiO2/Si disc-on-pillar (DOP) arrays of variable pitch with its analytical performance for quantitative applications. Experimental data were compared with those from finite-difference time-domain (FDTD) simulations used in the optimization of the array dimensions. A self-assembled monolayer (SAM) of benzenethiol rendered highly reproducible signals (RSD ∼4–10%) and SERS substrate enhancement factor (SSEF) values in the orders of 106–108 for all pitches. Spectra corresponding to rhodamine 6G (R6G) and 4-aminobenzoic acid demonstrated the advantages of using the more densely packed DOP arrays with a 160 nm pitch (gap = 40 nm) for quantitation in spite of the strongest SSEF was attained for a pitch of 520 nm corresponding to a 400 nm gap.


Sign in / Sign up

Export Citation Format

Share Document