scholarly journals Corrosion Inhibitors for Reinforced Concrete: A Review

Author(s):  
Han-Seung Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon ◽  
Subbiah Karthick

2006 ◽  
Vol 41 (3) ◽  
pp. 212-220 ◽  
Author(s):  
F. Bolzoni ◽  
S. Goidanich ◽  
L. Lazzari ◽  
M. Ormellese




2011 ◽  
Vol 46 (4) ◽  
pp. 334-339 ◽  
Author(s):  
M Ormellese ◽  
F Bolzoni ◽  
S Goidanich ◽  
MP Pedeferri ◽  
A Brenna


2015 ◽  
Vol 22 (03) ◽  
pp. 1550040 ◽  
Author(s):  
PANDIAN BOTHI RAJA ◽  
SEYEDMOJTABA GHOREISHIAMIRI ◽  
MOHAMMAD ISMAIL

Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.



2010 ◽  
Vol 636-637 ◽  
pp. 1059-1064 ◽  
Author(s):  
E.V. Pereira ◽  
R.B. Figueira ◽  
Manuela M. Salta ◽  
I.T.E. Fonseca

In this paper the efficiency of two organic corrosion inhibitors, a migratory and an admixture inhibitor, was evaluated by electrochemical techniques in solutions simulating the interstitial electrolyte of concrete and on concrete slabs exposed to natural environmental conditions over a five-year period. From obtained results, the usefulness of the two products is discussed aiming its application in new structures to prevent chlorides induced corrosion and as a curative method for repairing reinforced concrete structures contaminated with chlorides and affected by reinforcement corrosion.



2013 ◽  
Vol 357-360 ◽  
pp. 876-879
Author(s):  
Luboš Taranza ◽  
Rostislav Drochytka

Corrosion of steel constructions due to the affection of aggressive agents is one of the principal problems affecting reinforced concrete constructions. In critical cases, this phenomenon may cause static destabilisation of the construction and as a result, it is necessary to protect constructions using primary and secondary protection which significantly decreases this risk. This paper addresses the options for evaluating various types of protective anti-corrosion systems which use progressive corrosion inhibitor technology in a laboratory environment. Corrosion inhibitors efficiently slow down the course of corrosive processes on steel reinforcement and prolong the service life of building constructions. The rate of efficiency can be verified with high information capability in the laboratory by a series of testing methods.



Sign in / Sign up

Export Citation Format

Share Document