scholarly journals Longitudinal Differential Protection of Power Systems Transmission Lines Using Optical Waveguide

Author(s):  
Tomislav Rajić
Author(s):  
Mahyar Abasi ◽  
◽  
Ahmad Torabi Farsani ◽  
Arash Rohani ◽  
Arsalan Beigzadeh ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1146 ◽  
Author(s):  
Yincheng Li ◽  
Wenbin Zhang ◽  
Peng Li ◽  
Youhuan Ning ◽  
Chunguang Suo

At present, the method of using unmanned aerial vehicles (UAVs) with traditional navigation equipment for inspection of overhead transmission lines has the limitations of expensive sensors, difficult data processing, and vulnerable to weather and environmental factors, which cannot ensure the safety of UAV and power systems. Therefore, this paper establishes a mathematical model of spatial distribution of transmission lines to study the field strength distribution information around transmission lines. Based on this, research the navigation and positioning algorithm. The data collected by the positioning system are input into the mathematical model to complete the identification, positioning, and safety distance diagnosis of the field source. The detected data and processing results can provide reference for UAV obstacle avoidance navigation and safety warning. The experimental results show that the positioning effect of the positioning navigation algorithm is obvious, and the positioning error is within the range of use error and has good usability and application value.


2021 ◽  
Vol 14 (2) ◽  
pp. 100-107
Author(s):  
E. M. Farhadzadeh ◽  
A. Z. Muradalyiev ◽  
S. A. Muradalyiev ◽  
A. A. Nazarov

The organization of operation, maintenance and repair of the basic technological facilities of electric power systems (EPS), which are beyond their designed service life (hereinafter referred to as ageing facilities, or AFs) is one of the problems that determine the energy security of many countries, including economically developed nations. The principal cause of insufficient overall performance of AFs is the traditional focus of the EPS management on economic efficiency and the insufficient attention to reliability and safety of AFs. The tendency to nonlinear growth in the frequency of occurrence of unacceptable consequences in the EPS requires ensuring the operational reliability and safety of AFs. The averaged estimates of reliability and safety used at designing power facilities are not suitable for characterization of overall operational performance. Among the basic and the least investigated (in terms of operational reliability and safety) EPS facilities are overhead power transmission lines (OPL) with a voltage of 110 кV and above. This is for a reason. OPL are electric power facilities with elements distributed along a multi-kilometer line (supports, insulators, wires, accessories, etc.). That is what makes the organization of continuous monitoring of the technical condition of each of these elements, and, consequently, the assessment of operational reliability and safety, so problematic. A method is suggested for assessment of “weak links” among the operated OPL on operative intervals of time along with a method for assessment of the technical condition of OPL at examination of a representative sample.


Author(s):  
Rahul Krishnan ◽  
Subhajit Samanta ◽  
Sudha R ◽  
K Govardhan

This paper involves designing and applying electric field analysis on multiple long rod insulators. Quality HV insulators are an integral part of power systems because they separate the Transmission lines carrying high voltages from the grounded poles. They must have the ability to withstand both high electrical and mechanical stress. So for this purpose modeling of long rod insulator was done with multiple materials such as ceramic, porcelain, and fiber glass and silicon rubber. Electric field analysis can be used to determine voltage profile of each material which in turn can be used to determine how much electrical stress the material can undertake. An attempt was made to model existing long rod insulator designs using software like Solidworks. Subsequently modifications were made to the design by changing parameters such as diameter of the insulator body, angle made by insulator cups etc. These models were then subjected to electric field analysis using finite element analysis software such as Elecnet or Comsol Multiphysics in order to identify the points where maximum electric field stress exists. Further modifications were made on order to reduce and equalize the electric field over the insulator surface.


Sign in / Sign up

Export Citation Format

Share Document