scholarly journals Electric Field Analysis of High Voltage Insulators

Author(s):  
Rahul Krishnan ◽  
Subhajit Samanta ◽  
Sudha R ◽  
K Govardhan

This paper involves designing and applying electric field analysis on multiple long rod insulators. Quality HV insulators are an integral part of power systems because they separate the Transmission lines carrying high voltages from the grounded poles. They must have the ability to withstand both high electrical and mechanical stress. So for this purpose modeling of long rod insulator was done with multiple materials such as ceramic, porcelain, and fiber glass and silicon rubber. Electric field analysis can be used to determine voltage profile of each material which in turn can be used to determine how much electrical stress the material can undertake. An attempt was made to model existing long rod insulator designs using software like Solidworks. Subsequently modifications were made to the design by changing parameters such as diameter of the insulator body, angle made by insulator cups etc. These models were then subjected to electric field analysis using finite element analysis software such as Elecnet or Comsol Multiphysics in order to identify the points where maximum electric field stress exists. Further modifications were made on order to reduce and equalize the electric field over the insulator surface.

2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


2013 ◽  
Vol 44 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Xin Wang ◽  
Xungai Wang ◽  
Tong Lin

Concentrated electric field is crucial in generation of needleless electrospinning, the electric field profile together with electric field strength of the spinneret affect the needleless electrospinning performance directly. Understanding the electric field of spinneret would definitely benefit the designing and optimization of needleless electrospinning. Based on the software COMSOL Multiphysics 3.5a, 3D finite element analysis has been used to analyze the electric field profile and electric field strength of a ring spinneret for needleless electrospinning. The electric field profile shows that strong electric field concentrates on the top of the ring with intensity higher than 70 kV/cm. The electric field of ring spinneret is greatly affected by the geometry of the ring and other experimental parameters such as applied voltage and collecting distance. The electric field analysis introduced in this study will be helpful in selecting proper spinneret and scaling up the production rate of nanofibers in needleless electrospinning.


2014 ◽  
Vol 521 ◽  
pp. 321-329
Author(s):  
Quan Zhou ◽  
Li Tu ◽  
Rui Bie ◽  
Dong Feng ◽  
You Ping Fan

Currently, there is little experience about design of the 1-tower-double-circuit DC transmission lines. But the electromagnetic field distribution under its lines is complicated. In order to study the nominal electric field distribution of 1-tower-double-circuit DC transmission lines under different situations and a variety of operating conditions, the currents with analytical solutions are used to simulate the discrete or uneven distributed continuous charge. In the works within an acceptable range, the linear equations are built to solve simulation charge according to the electromagnetic theory. And ground nominal electric field of 1-tower-double-circuit DC transmission lines is calculated. The nominal electric field distribution extreme value extreme under different arrangements and nominal electric field distribution under a variety of operating conditions are analyzed comparatively. In this paper, the results show that the arrangements of lines have effects on the distribution characteristics of nominal electric field in normal condition. When monopole or bipolar or the bipolar of one line doesnt work, the change of nominal electric field is pronounced, but their extremes reduce.


2015 ◽  
Vol 135 (12) ◽  
pp. 731-736
Author(s):  
Takuma Terakura ◽  
Kei Takano ◽  
Takanori Yasuoka ◽  
Shigekazu Mori ◽  
Osamu Hosokawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document