scholarly journals Network Coding-Based Next-Generation IoT for Industry 4.0

Author(s):  
Goiuri Peralta ◽  
Raul G. Cid-Fuentes ◽  
Josu Bilbao ◽  
Pedro M. Crespo
Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 628
Author(s):  
Michail J. Beliatis ◽  
Kasper Jensen ◽  
Lars Ellegaard ◽  
Annabeth Aagaard ◽  
Mirko Presser

This paper investigates digital traceability technologies taking careful consideration of the company’s needs to improve the traceability of products at the production of GPV Group as well as the efficiency and added value in their production cycles. GPV is primarily an electronics manufacturing service company (EMS) that manufactures electronic circuit boards, in addition to big metal products at their mechanics manufacturing sites. The company aims to embrace the next generation IoT technologies such as digital traceability in their internal supply chain at manufacturing sites in order to stay compatible with the Industry 4.0 requirements. In this paper, the capabilities of suitable digital traceability technologies are screened together with the actual GPV needs to determine if deployment of such technologies would benefit GPV shop floor operations and can solve the issues they face due to a lack of traceability. The traceability term refers to tracking the geolocation of products throughout the manufacturing steps and how that functionality can foster further optimization of the manufacturing processes. The paper focuses on comparing different IoT technologies and analyze their positive and negative attributes to identify a suitable technological solution for product traceability in the metal manufacturing industry. Finally, the paper proposes a suitable implementation road map for GPV, which can also be adopted from other metal manufacturing industries to deploy Industry 4.0 traceability at shop floor level.


2020 ◽  
Vol 31 (5-6) ◽  
pp. 340-369
Author(s):  
Bernd Valeske ◽  
Ahmad Osman ◽  
Florian Römer ◽  
Ralf Tschuncky

2020 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Amin Mirkouei ◽  

This study discusses the deficiencies in transforming current farming to the next generation and precision agriculture, which applies the concept of Industry 4.0 to promote agriculture production sustainability through the use of advanced cyber systems and intelligent mechanical inventions. Precision agriculture’s goal is to increase the intelligence in the production of the crop, using real-time sensing, control and optimization for enhancing soil-crop health, as well as advanced cyber-enabled tools for automation and efficiency. Integrated analysis of agricultural and soil ecosystems is in nascent stages, but growing steadily with improvements in sensing technologies, interoperability standards and data-influenced decision making. This study aims to develop an adaptive Sensor-Drone-Satellite (SeDS) system for promoting farming operations and sustainability via balancing often-conflicting objectives (e.g. cost environmental and social). This integrated analyzer system is a conceptual test bed built on a cyber-physical interface


Sign in / Sign up

Export Citation Format

Share Document