scholarly journals Applications of Systems Engineering Technical Process Flows on Enterprise Systems

Author(s):  
Alper Pahsa

Systems engineering (SE) and SE management is the objective of all SE efforts, which defines the transformation of specific customer needs into a system product, service, or enterprise systems. Enterprise systems of systems engineering apply systems engineering fundamentals to the design of an enterprise. It is created by knowledge, principles, and processes tailored to the design of enterprise systems. Enterprise is a complex, socio-technical system that includes interdependent resources of people, information, and technology to reach a common goal. Enterprise systems is complex that a system configuration can be controlled among the different stakeholders. There are four different steps in enterprise systems process; it includes technology planning (TP), capabilities-based engineering analysis (CBEA), enterprise architecture, and enterprise analysis and assessment. This is the main reason that the enterprise work is developed and established at HAVELSAN Inc., Information and Security Technology Division. SE and technical processes for enterprise projects require establishing a systematic taxonomy and SE process customization. This chapter presents the work done on SE for enterprise projects at HAVELSAN. The chapter presents the results of the study of similarities and differences of the various applications of systems engineering of product systems oriented against enterprise systems.

2021 ◽  
Author(s):  
Sarra Fakhfakh ◽  
Marija Jankovic ◽  
Andreas M. Hein ◽  
Yann Chazal ◽  
Alain Dauron

2017 ◽  
Vol 11 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Stefan Wiesner ◽  
◽  
Eugenia Marilungo ◽  
Klaus-Dieter Thoben ◽  
◽  
...  

These days, manufacturers need to improve both their products and services, as well as their technological base to achieve a more sustainable value proposition, to become more efficient and effective in the market, and to satisfy user needs. Significant emerging technologies being discussed in various research studies include networked and smart-environments connected by Internet of Things (IoT), wearable technologies, tangible interfaces, human-robot collaboration, evolving tools, processes and interactions, virtual reality, the ubiquitous use of machine learning, and deep-learning algorithms. Such aspects are increasing the benefits of technology and opening the way toward technical breakthroughs, and have led to the emergence of cyber-physical systems (CPSs), which can be seen as systems of systems, requiring collaboration among different disciplines such as mechanical engineering, electrical engineering, and computer science for their realization. To enable the full potential of a CPS and generate a substantial competitive advantage, however, the service perspective cannot be neglected. Servitization of product offerings has recently accumulated in so-called product-service systems (PSSs), which describe the integrated development, realization, and provisioning of product-service bundles as a solution for customers. Thus, it is more and more important to consider both the technological and service aspects early in the development process. An integration of the two concepts will lead to product-service bundles provided on a cyber-physical basis, creating cyber-physical product-service systems (CPSSs). To base these complex systems on stakeholder needs and allow a successful and dynamic change to CPSSs in industry, multi-disciplinary requirements engineering (RE) for the hardware, software, and service components is a key aspect. The objective of this paper is to provide an introduction to the CPSS concept, understand its application in an industrial case, and elaborate on the specific challenges for systems engineering, focusing on the RE process.


ASCEND 2020 ◽  
2020 ◽  
Author(s):  
James Martin ◽  
Ryan A. Noguchi ◽  
Robert Minnichelli ◽  
Marilee J. Wheaton

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6672
Author(s):  
Rob Bemthuis ◽  
Maria-Eugenia Iacob ◽  
Paul Havinga

The sooner disruptive emergent behaviors are detected, the sooner preventive measures can be taken to ensure the resilience of business processes execution. Therefore, organizations need to prepare for emergent behaviors by embedding corrective control mechanisms, which help coordinate organization-wide behavior (and goals) with the behavior of local autonomous entities. Ongoing technological advances, brought by the Industry 4.0 and cyber-physical systems of systems paradigms, can support integration within complex enterprises, such as supply chains. In this paper, we propose a reference enterprise architecture for the detection and monitoring of emergent behaviors in enterprises. We focus on addressing the need for an adequate reaction to disruptions. Based on a systematic review of the literature on the topic of current architectural designs for understanding emergent behaviors, we distill architectural requirements. Our architecture is a hybrid as it combines distributed autonomous business logic (expressed in terms of simple business rules) and some central control mechanisms. We exemplify the instantiation and use of this architecture by means of a proof-of-concept implementation, using a multimodal logistics case study. The obtained results provide a basis for achieving supply chain resilience “by design”, i.e., through the design of coordination mechanisms that are well equipped to absorb and compensate for the effects of emergent disruptive behaviors.


2020 ◽  
Vol 30 (1) ◽  
pp. 1652-1667 ◽  
Author(s):  
James N. Martin ◽  
Robert J. Minnichelli

2007 ◽  
Vol 17 (1) ◽  
pp. 1676-1676
Author(s):  
Kristen Baldwin ◽  
Charles Dickerson ◽  
Abe Meilich ◽  
John Osterholz ◽  
Malcolm Touchin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document