scholarly journals Latest Advances in Single and Multiwavelength Digital Holography and Holographic Microscopy

2020 ◽  
Author(s):  
George Nehmetallah ◽  
Logan Williams ◽  
Thanh Nguyen

In this Chapter, we discuss the latest advances in digital holography (DH) and digital holographic microscopy (DHM). Specifically, we study the different setup configurations such as single and multiwavelength approaches in reflection and transmission modes and the reconstruction algorithms used. We also propose two novel telecentric recording configurations for single and multi-wavelength digital holographic microscopy (TMW-DHM) systems. Brief theory and results are shown for each of the experimental setups discussed. The advantages and disadvantages of the different configurations will be studied in details. Typical configuration features are, ease of phase reconstruction, speed, vertical measurement range without phase ambiguity, difficulty in applying optical and numerical post-processing aberration compensation methods. Aberrations can be due to: (a) misalignment, (b) multiwavelength method resulting in Chromatic aberrations, (c) the MO resulting in parabolic phase curvature, (d) the angle of the reference beam resulting in linear phase distortions, and (e) different optical components used in the setup, such as spherical aberration, astigmatism, coma, and distortion. We conclude that telecentric configuration eliminates the need of extensive digital automatic aberration compensation or the need for a second hologram’s phase to be used to obtain the object phase map through subtraction. We also conclude that without a telecentric setup and even with post-processing a residual phase remains to perturb the measurement. Finally, a custom developed user-friendly graphical user interface (GUI) software is employed to automate the reconstruction processes for all configurations.

Author(s):  
Kaveh Azartash ◽  
Enrico Gratton

A modified Mach-Zender set-up in reflection is applied to record and reconstruct holographic amplitude and phase images. A charged couple device (CCD) is used to record a hologram and numerical reconstruction algorithms are then applied to rebuild the hologram for obtaining both phase and amplitude information. One could also focus on multiple focal planes from a single hologram, similar to the focusing control of a conventional microscope. The morphology and behavior of mammalian cells is determined by an interaction between signals from the intracellular matrix and the cellular responses. It is important to note that the physical aspect of the extracellular matrix is as significant as the chemical nature of it. Specifically the stresses, mechanical forces, and the profile of the external environment have major effects on cell behavior. The mechanical and physical characteristics of a tissue are greatly dependent on a hierarchical spatial arrangement of its extra-cellular matrix components. A key player in the ECM is collagen which exhibits significant tensile strength on the cellular scale. Digital holographic microscopy (DHM) is applied to study the deformation of collage matrix in response to cell migration.


2010 ◽  
Vol 283 (6) ◽  
pp. 903-909 ◽  
Author(s):  
Karen M. Molony ◽  
Bryan M. Hennelly ◽  
Damien P. Kelly ◽  
Thomas J. Naughton

1999 ◽  
Vol 5 (S2) ◽  
pp. 362-363
Author(s):  
Tong Zhang ◽  
Ichirou Yamaguchi ◽  
Hywel Morgan

We applied phase-shifting digital holography to microscopy in this paper. At first lensless microscopy is proposed, in which no optical adjustment is necessary. Then, the method is applied to relax the limitation of focal depth in traditional optical microscopy. A theory for image formation and experimental verification using a few specimens are described.keywords: microscopy, digital holography, phase shiftingDue to the finite focal depth of an imaging lens, a limitation to normal optical microscopy-is that, only the 2-dimensional (2-D) information of an object can be obtained at one time. Besides, it is not convenient for quantitative analysis the observed image. Optical sectioning microscopy (OSM) and scanning confocal microscopy (SCM) which use opto-electronic detection have been proposed for quantitative analysis of a 3-D object. However, the former requires critical mechanical adjustment, while the latter uses timeconsuming mechanical 3-D scanning. Holographic microscopy can solve these problems because it can record 3-D information at one time. But, the chemical processing of holograms and the mechanical focusing at the reconstructed images cause more or less trouble. A 3-D imaging technique without use of photographic recording called optical scanning holography has recently been reported. However, there are also some trouble owing to the twin-image noise.


2009 ◽  
Author(s):  
Björn Kemper ◽  
Patrik Langehanenberg ◽  
Sebastian Kosmeier ◽  
Xiaoli Mo ◽  
Sabine Przibilla ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. 252
Author(s):  
Vinoth Balasubramani ◽  
Małgorzata Kujawińska ◽  
Cédric Allier ◽  
Vijayakumar Anand ◽  
Chau-Jern Cheng ◽  
...  

Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.


Sign in / Sign up

Export Citation Format

Share Document