scholarly journals Distributed Sources Optimal Sites and Sizes Search in Large Power Systems

Author(s):  
Mustafa Mosbah ◽  
Redha Djamel Mohammedi ◽  
Salem Arif

The integration of renewable sources into the power system has now become an unavoidable necessity for these technical and economic advantages and for the protection of the environment. In this chapter, a study is given for the integration of the Distributed Source (DS) in an optimal way and this by looking for the best location (sites) and the best power to be injected (size). The optimization technique used is based on genetic algorithms under technical and safety constraints, with the aim of minimizing active network losses and maximizing voltage stability. These objective functions are handled as a single and multi-objective problem. This study is applied on the standard IEEE 30 bus network under the MATLAB code.

2014 ◽  
pp. 16-21
Author(s):  
S. Vazquez-Rodriguez ◽  
R. J. Duro

In this paper we have addressed the problem of observability of power systems from the point of view of topological observability and using genetic algorithms for its determination. The objective is to find a way to determine if a system is observable by establishing if a spanning tree of the system that verifies certain properties with regards to the use of available measurements can be obtained. To this end we have developed a genotype-phenotype transformation scheme for genetic algorithms that permits using very simple genetic operators over integer based chromosomes which after a building process can become very complex trees. The procedure was successfully applied to standard benchmark systems and we present some results for one of them.


2020 ◽  
Vol 209 ◽  
pp. 07014
Author(s):  
Tulkin Gayibov ◽  
Bekzod Pulatov

Optimal planning of short-term modes of power systems is a complex nonlinear programming problem with many simple, functional and integral constraints in the form of equalities and inequalities. Especially, the presence of integral constraints causes significant difficulties in solving of such problem. Since, under such constraints, the modes of power system in separate time intervals of the considered planning period become dependent on the values of the parameters in other intervals. Accordingly, it becomes impossible to obtain the optimal mode plan as the results of separate optimization for individual time intervals of the period under consideration. And the simultaneous solution of the problem for all time intervals of the planning period in the conditions of large power systems is associated with additional difficulties in ensuring the reliability of convergence of the iterative computational process. In this regard, the issues of improving the methods and algorithms for optimization of short-term modes of power systems containing thermal and large hydroelectric power plants with reservoirs, in which water consumption is regulated in the short-term planning period, remains as an important task. In this paper, we propose the effective algorithm for solving the problem under consideration, which makes it possible to quickly and reliably determine the optimal operating modes of the power system for the planned period. The results of research of effectiveness of this algorithm are presented on the example of optimal planning of daily mode of the power system, which contains two thermal and three hydraulic power plants..


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3365 ◽  
Author(s):  
Lukas Wienholt ◽  
Ulf Müller ◽  
Julian Bartels

The paradigm shift of large power systems to renewable and decentralized generation raises the question of future transmission and flexibility requirements. In this work, the German power system is brought to focus through a power transmission grid model in a high spatial resolution considering the high voltage (110 kV) level. The fundamental questions of location, type, and size of future storage units are addressed through a linear optimal power flow using today’s power grid capacities and a generation portfolio allowing a 66% generation share of renewable energy. The results of the optimization indicate that for reaching a renewable energy generation share of 53% with this set-up, a few central storage units with a relatively low overall additional storage capacity of around 1.6 GW are required. By adding a constraint of achieving a renewable generation share of at least 66%, storage capacities increase to almost eight times the original capacity. A comparison with the German grid development plan, which provided the basis for the power generation data, showed that despite the non-consideration of transmission grid extension, moderate additional storage capacities lead to a feasible power system. However, the achievement of a comparable renewable generation share provokes a significant investment in additional storage capacities.


Author(s):  
Raja Masood Larik ◽  
Mohd. Wazir Mustafa ◽  
Manoj Kumar Panjwani

<p>Despite a tremendous development in optimal power flow (OPF), owing to the obvious complexity, non-linearity and unwieldy size of the large interconnected power systems, several problems remain unanswered in the existing methods of OPF. Seizing specific topics for maximizing voltage stability margin and its implementation, a detailed literature survey discussing the existing methods of solution and their drawbacks is presented in this research. The phenomenon of voltage collapse in power systems, methods to investigate voltage collapse, and methods related to voltage stability are briefly surveyed. Finally, the study presents a statistical method for analyzing a power system through eigenvalue analysis in relation to the singular values of the load flow Jacobian. Future study may focus on changes in theories in conjunction with large power systems.</p>


2018 ◽  
Vol 7 (2.28) ◽  
pp. 381
Author(s):  
O L. Bekri ◽  
F Mekri

Voltage instabilities and/or collapses have been recognized as one of the major causes of power system blackouts. The main objective of this paper is to provide some solutions to prevent large power systems from voltage collapse. The FACTS (Flexible AC Transmission Sys-tems) devices placement gives new opportunities for enhancing voltage stability. The calculation of the loadability point is based on the con-tinuation power flow technique (CPF) to choosing the optimal placement of STATCOM (Static Synchronous Compensator) in order to improve voltage stability by increasing the loading parameter, maintaining bus voltages at desired level and minimizing losses in a power system network.A 39-bus New England power system is chosen as test case in order to illustrate this approach. The obtained results show the efficiency of the proposed method for the planning of the Static Synchronous Compensator optimal placement and the voltage stability enhancement.  


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hisham M. Soliman ◽  
Hassan A. Yousef ◽  
Rashid Al-Abri ◽  
Khaled A. El-Metwally

Electric power grids are highly nonlinear complex systems. This manuscript presents a novel approach to the stabilization of large power systems. The proposed control satisfied three constraints: decentralization, input saturation imposed in practice, and robustness against load changes. The large power system is decomposed into subsystems, for each a decentralized controller is designed. The effect of the rest of the system on each subsystem is considered as an external disturbance and represented in norm-bounded form. A new approach to solve this problem is proposed in the present paper. The approach is based on the method of invariant ellipsoids, and the tool of linear matrix inequalities (LMI) is utilized to solve the resulting optimization problem. Control of multimachine power system is studied using the proposed control. Comparison with other techniques is also given.


2012 ◽  
Vol 433-440 ◽  
pp. 3395-3399
Author(s):  
Hong Bo Cheng

The fault diagnosis in power system is treated as a 0-1 integer programming problem use the switching and action information collected by SCADA system, combined with the analysis of protect. A comprehensive objective function has been established and genetic algorithms has been used to solve it. This approach has taken fully advantage of the characteristics of the power system's protection and the network topology configuration information. The optimized method is used to locate the fault as possible as fast. Rigorous theory of the method does not require the introduction of heuristic knowledge, and it can adapt to changes in network topology, and can used both in the single failure of power system and multiple failures in power system too.


2011 ◽  
Vol 1 (3) ◽  
pp. 352-358 ◽  
Author(s):  
Chairerg Jakpattanajit ◽  
Naebboon Hoonchareon ◽  
Akihiko Yokoyama

Sign in / Sign up

Export Citation Format

Share Document