scholarly journals Stress-Strain Relationship: Postulated Concept to Understand Genetic Mechanism Associated with a Seismic Event

2021 ◽  
Author(s):  
Umesh Prasad Verma ◽  
Madhurendra Narain Sinha ◽  
Pushan Kumar Dutta ◽  
Subhra Mullick

In this study, we propose the design methodology for monitoring the earthquake and for detecting and tracking micro-seismic changes in the earthquake prediction system. The alert device includes these sensors will be drastically different from current early warnings using the dozens of seismometers network across seismically active regions for measurement of small acceleration signals directly and, as the first, low-noise stage of the instruments measuring low-noise velocity signals. Strain develops over considerable time in the overlying stratum at right angle to the applied shearing (max) stress, obeying the internal friction of the stratum, available seismic energy and law of stress–strain relationship. Using estimated energy (seismic), stress accumulation, the addition or subtraction in the strain rate due to stress developed can be analyzed for a seismic event. This concept may lead to better understanding of stress generation; build up, transfer and final drop. Then we propose a methodology to identify type of data can be used for the spectral analysis in earthquake seismology and what type of instrument can be used for the spectral analysis in for data acquisition.

1983 ◽  
Author(s):  
K. Arulanandan ◽  
Y. Dafalias ◽  
L. R. Herrmann ◽  
A. Anandarajah ◽  
N. Meegoda

Author(s):  
Satheeskumar Navaratnam ◽  
Hendrik Wijaya ◽  
Pathmanathan Rajeev ◽  
Priyan Mendis ◽  
Kate Nguyen

2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


2003 ◽  
Vol 18 (9) ◽  
pp. 2068-2078 ◽  
Author(s):  
A. DiCarlo ◽  
H. T. Y. Yang ◽  
S. Chandrasekar

A method for determining the stress–strain relationship of a material from hardness values H obtained from cone indentation tests with various apical angles is presented. The materials studied were assumed to exhibit power-law hardening. As a result, the properties of importance are the Young's modulus E, yield strength Y, and the work-hardening exponent n. Previous work [W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992)] showed that E can be determined from initial force–displacement data collected while unloading the indenter from the material. Consequently, the properties that need to be determined are Y and n. Dimensional analysis was used to generalize H/E so that it was a function of Y/E and n [Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999); Philos. Mag. Lett. 77, 39 (1998)]. A parametric study of Y/E and n was conducted using the finite element method to model material behavior. Regression analysis was used to correlate the H/E findings from the simulations to Y/E and n. With the a priori knowledge of E, this correlation was used to estimate Y and n.


2004 ◽  
Vol 274-276 ◽  
pp. 241-246 ◽  
Author(s):  
Bo Han ◽  
Hong Jian Liao ◽  
Wuchuan Pu ◽  
Zheng Hua Xiao

Sign in / Sign up

Export Citation Format

Share Document