A fractional derivative-based numerical approach to rate-dependent stress–strain relationship for viscoelastic materials

2021 ◽  
Author(s):  
Teng Su ◽  
Hongwei Zhou ◽  
Jiawei Zhao ◽  
Zelin Liu ◽  
Daniel Dias
Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

In the separated paper in this conference, we proposed two fractional derivative models for stress-strain relation of viscoelastic materials. In this paper, these models are tried to analyze the experimental results on impulse response of a gel. It is shown that one model reproduces well the impulse response to relatively small impact velocity, while the other explains the response to larger impact velocity. It is also shown that the empirical nonlinear fractional derivative model proposed by authors at FDA08 has nearly identical impulse response to one of the models.


1983 ◽  
Author(s):  
K. Arulanandan ◽  
Y. Dafalias ◽  
L. R. Herrmann ◽  
A. Anandarajah ◽  
N. Meegoda

Author(s):  
Satheeskumar Navaratnam ◽  
Hendrik Wijaya ◽  
Pathmanathan Rajeev ◽  
Priyan Mendis ◽  
Kate Nguyen

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


2005 ◽  
Vol 24 (4) ◽  
pp. 209-222 ◽  
Author(s):  
S.P. Mahapatra ◽  
D.K. Tripathy

Compressive stress-strain properties of unfilled and conductive carbon black (VulcanXC 72) filled oil extended EPDM (keltan 7341A) microcellular vulcanizates were studied as a function of blowing agent (density) and filler loading. With decrease in density, the compressive stress-strain curves for microcellular vulcanizates behaved differently from those of solid vulcanizates. The compressive stress-strain properties were found to be strain rate dependent. The log-log plots of relative density of the microcellular vulcanizates showed a fairly linear correlation with the relative modulus. The compression set at a constant stress increased with decrease in density. The efficiency of energy absorption E, was also studied as a function of filler and blowing agent loading. From the compressive stress-strain plots the efficiency E and the ideality parameter I, were evaluated. These parameters were plotted against stress to obtain maximum efficiency and the maximum ideality region, which will make these materials suitable for cushioning and packaging applications in electronic devices.


Sign in / Sign up

Export Citation Format

Share Document