scholarly journals Chloroplast and Mitochondria

2021 ◽  
Author(s):  
Noorah Abdulaziz Othman Alkubaisi ◽  
Nagwa Mohammed Amin Aref

Photosynthesis is a crucial process for plants on earth that changes light energy to chemical energy. Virus infection can cause dramatic photosynthesis changes: respiration and the translocation of carbohydrates and other substances around the host plant. Chlorosis in virus-infected leaves like Barley Yellow Dwarf Virus (BYDV- PAV).infection can result from damage to chloroplasts resulting from inhibition of photosynthetic activity. Our present study combines TEM and chlorophyll-level content in the presence of Gold nanoparticles (AuNPS) to explore the repair mechanism for the yellowing leaf symptom development caused by infection with BYDV- PAV by illustrating TEM micrographs; showing fragmentized grana, deformation of the myelin like bodies (MLB), many vesicles; osmiophilic lipid granules/plastoglobulus, starch body, and plasmolysis in the chloroplast, distribution of AuNPs & VLPs near and inside the chloroplast. Mitochondria, Double-membrane-bound organelle, Distorted mitochondrion, Amorphous inclusion bodies.

Crop Science ◽  
1999 ◽  
Vol 39 (1) ◽  
pp. 158-163 ◽  
Author(s):  
Walter E. Riedell ◽  
Robert W. Kieckhefer ◽  
Scott D. Haley ◽  
Marie A. C Langham ◽  
Paul D. Evenson

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4833
Author(s):  
Shormin Choudhury ◽  
Hongliang Hu ◽  
Philip Larkin ◽  
Holger Meinke ◽  
Sergey Shabala ◽  
...  

Barley yellow dwarf virus-PAV (BYDV-PAV) is one of the major viruses causing a widespread and serious viral disease affecting cereal crops. To gain a better understanding of plant defence mechanisms of BYDV resistance genes (Bdv2 and RYd2) against BYDV-PAV infection, the differences in agronomical, biochemical and histological changes between susceptible and resistant wheat and barley cultivars were investigated. We found that root growth and total dry matter of susceptible cultivars showed greater reduction than that of resistant ones after infection. BYDV infected leaves in susceptible wheat and barley cultivars showed a significant reduction in photosynthetic pigments, an increase in the concentration of reducing sugar. The protein levels were also low in infected leaves. There was a significant increase in total phenol contents in resistant cultivars, which might reflect a protective mechanism of plants against virus infection. In phloem tissue, sieve elements (SE) and companion cells (CC) were severely damaged in susceptible cultivars after infection. It is suggested that restriction of viral movement in the phloem tissue and increased production of phenolic compounds may play a role in the resistance and defensive mechanisms of both Bdv2 and RYd2 against virus infection.


2018 ◽  
Author(s):  
Shormin Choudhury ◽  
Hongliang Hu ◽  
Philip Larkin ◽  
Holger Meinke ◽  
Sergey Shabala ◽  
...  

Barley yellow dwarf virus-PAV (BYDV-PAV) is one of the major viruses causing a widespread and serious viral disease affecting cereal crops. To gain a better understanding of plant defence mechanisms of BYDV resistance genes ( Bdv2 and Yd2 ) against BYDV-PAV infection, the differences in agronomical, biochemical and histological changes between susceptible and resistant wheat and barley cultivars were investigated. We found that root growth and total dry matter of susceptible cultivars showed greater reduction than that of resistant ones after infection. BYDV infected leaves in susceptible wheat and barley cultivars showed a significant reduction in photosynthetic pigments, an increase in the concentration of reducing sugar. The protein levels were also low in infected leaves. There was a significant increase in total phenol contents in resistant cultivars, which might reflect a protective mechanism of plants against virus infection. In phloem tissue, sieve elements (SE) and companion cells (CC) were severely damaged in susceptible cultivars after infection. It is suggested that restriction of viral movement in the phloem tissue and increased production of phenolic compounds may play a role in the resistance and defensive mechanisms of both Bdv2 and Yd2 against virus infection.


2013 ◽  
Vol 13 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Xindong Wang ◽  
Yan Liu ◽  
Liang Chen ◽  
Dan Zhao ◽  
Xifeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document