scholarly journals Global Optimization Method to Multiple Local Optimals with the Surface Approximation Methodology and Its Application for Industry Problems

2021 ◽  
Author(s):  
Ichiro Hagiwara

Although generally speaking, a great number of functional evaluations may be required until convergence, it can be solved by using neural network effectively. Here, techniques to search the region of interest containing the global optimal design selected by random seeds is investigated. Also techniques for finding more accurate approximation using Holographic Neural Network (HNN) improved by using penalty function for generalized inverse matrix is investigated. Furthermore, the mapping method of extrapolation is proposed to make the technique available to general application in structural optimization. Application examples show that HNN may be expected as potential activate and feasible surface functions in response surface methodology than the polynomials in function approximations. Finally, the real design examples of a vehicle performance such as idling vibration, booming noise, vehicle component crash worthiness and combination problem between vehicle crashworthiness and restraint device performance at the head-on collision are used to show the effectiveness of the proposed method.

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098468
Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Yijiang Ma ◽  
Hongxun Fu

The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.


Author(s):  
GERALDO BRAZ JUNIOR ◽  
LEONARDO DE OLIVEIRA MARTINS ◽  
ARISTÓFANES CORREA SILVA ◽  
ANSELMO CARDOSO PAIVA

Female breast cancer is a major cause of deaths in occidental countries. Computer-aided Detection (CAD) systems can aid radiologists to increase diagnostic accuracy. In this work, we present a comparison between two classifiers applied to the separation of normal and abnormal breast tissues from mammograms. The purpose of the comparison is to select the best prediction technique to be part of a CAD system. Each region of interest is classified through a Support Vector Machine (SVM) and a Bayesian Neural Network (BNN) as normal or abnormal region. SVM is a machine-learning method, based on the principle of structural risk minimization, which shows good performance when applied to data outside the training set. A Bayesian Neural Network is a classifier that joins traditional neural networks theory and Bayesian inference. We use a set of measures obtained by the application of the semivariogram, semimadogram, covariogram, and correlogram functions to the characterization of breast tissue as normal or abnormal. The results show that SVM presents best performance for the classification of breast tissues in mammographic images. The tests indicate that SVM has more generalization power than the BNN classifier. BNN has a sensibility of 76.19% and a specificity of 79.31%, while SVM presents a sensibility of 74.07% and a specificity of 98.77%. The accuracy rate for tests is 78.70% and 92.59% for BNN and SVM, respectively.


Author(s):  
Ying He ◽  
Muqin Tian ◽  
Jiancheng Song ◽  
Junling Feng

To solve the problem that it is difficult to identify the cutting rock wall hardness of the roadheader in coal mine, a recognition method of cutting rock wall hardness is proposed based on multi-source data fusion and optimized probabilistic neural network. In this method, all kinds of cutting signals (the vibration signal of cutting arm, the pressure signal of hydraulic cylinders and current signal of cutting motor) are analyzed by wavelet packet to extract the feature vector, and the multi feature signal sample database of rock cutting with different hardness is established. To solve the problems of uncertain spread and complex network structure of probabilistic neural network (PNN), a PNN optimization method based on differential evolution algorithm (DE) and QR decomposition was proposed, and the rock hardness was identified based on multi-source data fusion by optimizing PNN. Then, based on the ground test monitoring data of a heavy longitudinal roadheader, the method is applied to recognize the cutting rock hardness, and compared with other common pattern recognition methods. The experimental results show that the cutting rock hardness recognition based on multi-source data fusion and optimized PNN has higher recognition accuracy, and the overall recognition error is reduced to 6.8%. The recognition of random cutting rock hardness is highly close to the actual. The method provides theoretical basis and technical premise for realizing automatic and intelligent cutting of heading face.


Author(s):  
Eslam Mohammed Abdelkader ◽  
Osama Moselhi ◽  
Mohamed Marzouk ◽  
Tarek Zayed

Existing bridges are aging and deteriorating, raising concerns for public safety and the preservation of these valuable assets. Furthermore, the transportation networks that manage many bridges face budgetary constraints. This state of affairs necessitates the development of a computer vision-based method to alleviate shortcomings in visual inspection-based methods. In this context, the present study proposes a three-tier method for the automated detection and recognition of bridge defects. In the first tier, singular value decomposition ([Formula: see text]) is adopted to formulate the feature vector set through mapping the most dominant spatial domain features in images. The second tier encompasses a hybridization of the Elman neural network ([Formula: see text]) and the invasive weed optimization (I[Formula: see text]) algorithm to enhance the prediction performance of the ENN. This is accomplished by designing a variable optimization mechanism that aims at searching for the optimum exploration–exploitation trade-off in the neural network. The third tier involves validation through comparisons against a set of conventional machine-learning and deep-learning models capitalizing on performance prediction and statistical significance tests. A computerized platform was programmed in C#.net to facilitate implementation by the users. It was found that the method developed outperformed other prediction models achieving overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient, and area under curve of 0.955, 0.955, 0.914, 0.965, 0.937, and 0.904, respectively as per cross validation. It is expected that the method developed can improve the decision-making process in bridge management systems.


2010 ◽  
Vol 156-157 ◽  
pp. 10-17 ◽  
Author(s):  
Er Shun Pan ◽  
Yao Jin ◽  
Zhao Mei ◽  
Ying Wang

A stencil printing process (SPP) optimization problem is studied in this paper. Due to the limitation that neural network requires a large number of samples for the accurate model fitting, a two-stage SPP optimization method is proposed. The design interval can be reduced with small sample by using neural network. In this reduced design interval , response surface method is adopted to obtain the accurate mathematical SPP model. The concept of confidence level is introduced to make the proposed model robust. An interactive method is used to solve the model. The proposed method is compared with the one-stage optimization method and the results show that the proposed method achieves a better performance on each objective.


Sign in / Sign up

Export Citation Format

Share Document