scholarly journals ON HEAT SOURCE IN SUBDUCTION ZONE

2021 ◽  
Vol 12 (3) ◽  
pp. 471-484
Author(s):  
A. A. Kirdyashkin ◽  
A. G. Kirdyashkin ◽  
V. E. Distanov ◽  
I. N. Gladkov

The subduction of an oceanic plate is studied as the motion of a high-viscosity Newtonian fluid. The subducting plate spreads along the 670-km depth boundary under the influence of oppositely directed horizontal forces. These forces are due to oppositely directed horizontal temperature gradients. We consider the flow structure and heat transfer in the layer that includes both the oceanic lithosphere and the crust and moves underneath a continent. The heat flow is estimated at the contact between the subducting plate and the surrounding mantle in the continental limb of the subduction zone. Our study results show that the crustal layer of the subducting plate can melt and a thermochemical plume can form at the 670-km boundary. Our model of a thermochemical plume in the subduction zone shows the following: (1) formation of a plume conduit in the crustal layer of the subducting plate; (2) formation of a primary magmatic chamber in the area wherein the melting rate equals the rate of subduction; (3) origination of a vertical plume conduit from the primary chamber melting through the continent; (4) plume eruption through the crustal layer to the surface, i.e. formation of a volcano. Our experiments are aimed to model the plume conduit melting in an inclined flat layer above a local heat source. The melt flow structure in the plume conduit is described. Laboratory modeling have revealed that the mechanisms of melt eruption from the plume conduit differ depending on whether a gas cushion is present or absent at the plume roof.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012004
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
Yu M Nepogodina

Abstract A model of the thermal and hydrodynamic structure of the subduction zone is proposed. This model includes free convection flows in the asthenospheric layer and layer C (mantle transition zone). Temperature profiles in the subducting lithospheric plate, as well as in the continental limb of the subduction zone, are presented. The heat flux due to friction at the contact between the subducting plate and the continental limb significantly affects the heat transfer and, consequently, the temperature field formation in the subduction zone. The temperature level in the crustal layer of the submerging plate implies that there is no melting in the crustal layer.


Author(s):  
Brian O’Driscoll ◽  
Julien Leuthold ◽  
Davide Lenaz ◽  
Henrik Skogby ◽  
James M D Day ◽  
...  

Abstract Samples of peridotites and pyroxenites from the mantle and lower crustal sections of the Leka Ophiolite Complex (LOC; Norway) are examined to investigate the effects of melt-rock reaction and oxygen fugacity variations in the sub-arc oceanic lithosphere. The LOC is considered to represent supra-subduction zone (SSZ) oceanic lithosphere, but also preserves evidence of pre-SSZ magmatic processes. Here we combine field and microstructural observations with mineral chemical and structural analyses of different minerals from the major lithologies of the LOC. Wehrlite and websterite bodies in both the mantle and lower crust contain clinopyroxene likely formed at a pre-SSZ stage, characterised by high Al, high Cr, low Mg crystal cores. These clinopyroxenes also exhibit low Al, low Cr, high Mg outer rims and intracrystalline dissolution surfaces, indicative of reactive melt percolation during intrusion and disruption of these lithologies by later, SSZ-related, dunite-forming magmas. Chromian-spinel compositional variations correlate with lithology; dunite-chromitite Cr-spinels are characterised by relatively uniform and high TiO2 and Al2O3, indicating formation by melt-rock reaction associated with SSZ processes. Harzburgite Cr-spinel compositions are more variable but preserve a relatively high Al2O3, low TiO2 endmember that may reflect crystallisation in a pre-SSZ oceanic spreading centre setting. An important finding of this study is that the LOC potentially preserves the petrological signature of a transition between oceanic spreading centre processes and subsequent supra-subduction zone magmatism. Single crystal Cr-spinel Fe3+/ΣFe ratios calculated on the basis of stoichiometry (from electron microprobe [EPMA] and crystal structural [X-ray diffraction; XRD] measurements) correlate variably with those calculated by point-source (single crystal) Mössbauer spectroscopy. Average sample EPMA Fe3+/ΣFe ratios overestimate or underestimate the Mössbauer-derived values for harzburgites, and always overestimate the Mössbauer Fe3+/ΣFe ratios for dunites and chromitites. The highest Fe3+/ΣFe ratios, irrespective of method of measurement, are therefore generally associated with dunites and chromitites, and yield calculated log(fO2)FMQ values of up to ~+1.8. While this lends support to the formation of the dunites and chromitites during SSZ-related melt percolation in the lower part of the LOC, it also suggests that these melts were not highly oxidised, compared to typical arc basalts (fO2FMQ of >+2). This may in turn reflect the early (forearc) stage of subduction zone activity preserved by the LOC and implies that some of the arc tholeiitic and boninitic lava compositions preserved in the upper portion of the ophiolite are not genetically related to the mantle and lower crustal rocks, against which they exhibit tectonic contacts. Our new data also have implications for the use of ophiolite chromitites as recorders of mantle oxidation state through time; a global comparison suggests that the Fe3+/ΣFe signatures of ophiolite chromitites are likely to have more to do with local environmental petrogenetic conditions in sub-arc systems than large length-scale mantle chemical evolution.


There are well established differences in the chemical and isotopic characteristics of the calc-alkaline basalt—andesite-dacite-rhyolite association of the northern (n.v.z.), central (c.v.z.) and southern volcanic zones (s.v.z.) of the South American Andes. Volcanic rocks of the alkaline basalt-trachyte association occur within and to the east of these active volcanic zones. The chemical and isotopic characteristics of the n.v.z. basaltic andesites and andesites and the s.v.z. basalts, basaltic andesites and andesites are consistent with derivation by fractional crystallization of basaltic parent magmas formed by partial melting of the asthenospheric mantle wedge containing components from subducted oceanic lithosphere. Conversely, the alkaline lavas are derived from basaltic parent magmas formed from mantle of ‘within-plate’ character. Recent basaltic andesites from the Cerro Galan volcanic centre to the SE of the c.v.z. are derived from mantle containing both subduction zone and within-plate components, and have experienced assimilation and fractional crystallization (a.f.c.) during uprise through the continental crust. The c.v.z. basaltic andesites are derived from mantle containing subduction-zone components, probably accompanied by a.f.c. within the continental crust. Some c.v.z. lavas and pyroclastic rocks show petrological and geochemical evidence for magma mixing. The petrogenesis of the c.v.z. lavas is therefore a complex process in which magmas derived from heterogeneous mantle experience assimilation, fractional crystallization, and magma mixing during uprise through the continental crust.


Author(s):  
Jiansheng Wang ◽  
Zhiqin Yang

The heat transfer characteristic and flow structure of fluid in the rectangular channel with different height vortex generators in small scale are investigated with numerical simulation. Meantime, the properties of heat transfer and flow of fluid in the rectangular channel are compared with the channel which located small scale vortex generator. The variation law of local heat transfer and flow structure in channel is obtained. The mechanism of heat transfer enhancement of small scale vortex generators is discussed in detail. It is found that the influence of vortex generator on heat transfer is not in proportion to the size of vortex generator. What is more, turbulent flow structure near the wall, which influences the temperature distribution near the wall, induces the variety of local heat transfer. The fluid movement towards to the wall causes the heat transfer enhanced. On the contrary, the fluid movement away from the wall decreases the local heat transfer.


Sign in / Sign up

Export Citation Format

Share Document