scholarly journals Orbit growth of contact structures after surgery

2021 ◽  
Vol 4 ◽  
pp. 1103-1141
Author(s):  
Patrick Foulon ◽  
Boris Hasselblatt ◽  
Anne Vaugon
Keyword(s):  
Author(s):  
Peter Mann

This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.


2015 ◽  
Vol 152 (1) ◽  
pp. 152-186 ◽  
Author(s):  
Tye Lidman ◽  
Steven Sivek

We apply results from both contact topology and exceptional surgery theory to study when Legendrian surgery on a knot yields a reducible manifold. As an application, we show that a reducible surgery on a non-cabled positive knot of genus$g$must have slope$2g-1$, leading to a proof of the cabling conjecture for positive knots of genus 2. Our techniques also produce bounds on the maximum Thurston–Bennequin numbers of cables.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Henning Fouckhardt ◽  
Johannes Strassner ◽  
Carina Heisel ◽  
Dominic Palm ◽  
Christoph Doering

Tunable microoptics deals with devices of which the optical properties can be changed during operation without mechanically moving solid parts. Often a droplet is actuated instead, and thus tunable microoptics is closely related to microfluidics. One such device/module/cell type is an optical shutter, which is moved in or out of the path of the light. In our case the transmitting part comprises a moving transparent and electrically conductive water droplet, embedded in a nonconductive blackened oil, that is, an opaque emulsion with attenuation of 30 dB at 570 nm wavelength over the 250 μm long light path inside the fluid (15 dB averaged over the visible spectral range). The insertion loss of the cell is 1.5 dB in the “open shutter” state. The actuation is achieved via electrowetting-on-dielectrics (EWOD) with rectangular AC voltage pulses of 2·90 V peak-to-peak at 1 kHz. To flexibly allow for horizontal, vertical, and diagonal droplet movement in the upright x-y plane, the contact structures are prepared such that four possible stationary droplet positions exist. The cell is configured as two capacitors in series (along the z axis), such that EWOD forces act symmetrically in the front and back of the 60 nl droplet with a response time of <20 ms.


2007 ◽  
Vol 129 (5) ◽  
pp. 1403-1447 ◽  
Author(s):  
Paolo. Ghiggini ◽  
Paolo. Lisca ◽  
András. Stipsicz

2001 ◽  
Vol 10 (01) ◽  
pp. 1-35 ◽  
Author(s):  
RICCARDO BENEDETTI ◽  
CARLO PETRONIO

We provide combinatorial realizations, according to the usual objects/moves scheme, of the following three topological categories: (1) pairs (M, v) where M is a 3-manifold (up to diffeomorphism) and v is a (non-singular vector) field, up to homotopy; here possibly ∂M≠∅, and v may be tangent to ∂M, but only in a concave fashion, and homotopy should preserve tangency type; (2) framed links L in M, up to framed isotopy; (3) triples (M, v, L), with (M, v) as above and L transversal to v, up to pseudo-Legendrian isotopy (transverality-preserving simultaneous homotopy of v and isotopy of L). All realizations are based on the notion of branched standard spine, and build on results previously obtained, Links are encoded by means of diagrams on branched spines, where the diagram is C 1 with respect to the branching. Several motivations for being interested in combinatorial realizations of the topological categories considered in this paper are given in the introduction. The encoding of links is suitable for the comparison of the framed and the pseudo-Legendrian categories, and some applications are given in connection with contact structures, torsion and finite-order invariants. An estension of Trace's notion of winding number of a knot diagram is introduced and discussed.


Author(s):  
David E. Blair

SynopsisClassically the tangent sphere bundles have formed a large class of contact manifolds; their contact structures are not in general regular, however. Specifically we prove that the natural contact structure on the tangent sphere bundle of a compact Riemannian manifold of non-positive constant curvature is not regular.


2019 ◽  
Vol 11 (01) ◽  
pp. 53-108 ◽  
Author(s):  
Marcelo R. R. Alves

In this paper we study the growth rate of a version of Legendrian contact homology, which we call strip Legendrian contact homology, in 3-dimensional contact manifolds and its relation to the topological entropy of Reeb flows. We show that: if for a pair of Legendrian knots in a contact 3-manifold [Formula: see text] the strip Legendrian contact homology is defined and has exponential homotopical growth with respect to the action, then every Reeb flow on [Formula: see text] has positive topological entropy. This has the following dynamical consequence: for all Reeb flows (even degenerate ones) on [Formula: see text] the number of hyperbolic periodic orbits grows exponentially with respect to the period. We show that for an infinite family of 3-manifolds, infinitely many different contact structures exist that possess a pair of Legendrian knots for which the strip Legendrian contact homology has exponential growth rate.


Sign in / Sign up

Export Citation Format

Share Document