scholarly journals Abelian varieties isogenous to a power of an elliptic curve over a Galois extension

2019 ◽  
Vol 31 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Isabel Vogt
2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2018 ◽  
Vol 154 (5) ◽  
pp. 934-959 ◽  
Author(s):  
Bruce W. Jordan ◽  
Allan G. Keeton ◽  
Bjorn Poonen ◽  
Eric M. Rains ◽  
Nicholas Shepherd-Barron ◽  
...  

Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.


2012 ◽  
Vol 15 ◽  
pp. 308-316 ◽  
Author(s):  
Christophe Arene ◽  
David Kohel ◽  
Christophe Ritzenthaler

AbstractWe prove that under any projective embedding of an abelian variety A of dimension g, a complete set of addition laws has cardinality at least g+1, generalizing a result of Bosma and Lenstra for the Weierstrass model of an elliptic curve in ℙ2. In contrast, we prove, moreover, that if k is any field with infinite absolute Galois group, then there exists for every abelian variety A/k a projective embedding and an addition law defined for every pair of k-rational points. For an abelian variety of dimension 1 or 2, we show that this embedding can be the classical Weierstrass model or the embedding in ℙ15, respectively, up to a finite number of counterexamples for ∣k∣≤5 .


2018 ◽  
Vol 154 (9) ◽  
pp. 1889-1920 ◽  
Author(s):  
Kęstutis Česnavičius

For an optimal modular parametrization $J_{0}(n){\twoheadrightarrow}E$ of an elliptic curve $E$ over $\mathbb{Q}$ of conductor $n$, Manin conjectured the agreement of two natural $\mathbb{Z}$-lattices in the $\mathbb{Q}$-vector space $H^{0}(E,\unicode[STIX]{x1D6FA}^{1})$. Multiple authors generalized his conjecture to higher-dimensional newform quotients. We prove the Manin conjecture for semistable $E$, give counterexamples to all the proposed generalizations, and prove several semistable special cases of these generalizations. The proofs establish general relations between the integral $p$-adic étale and de Rham cohomologies of abelian varieties over $p$-adic fields and exhibit a new exactness result for Néron models.


2013 ◽  
Vol 149 (12) ◽  
pp. 2011-2035 ◽  
Author(s):  
David Grant ◽  
Su-Ion Ih

AbstractLet $k$ be a number field with algebraic closure $ \overline{k} $, and let $S$ be a finite set of primes of $k$ containing all the infinite ones. Let $E/ k$ be an elliptic curve, ${\mit{\Gamma} }_{0} $ be a finitely generated subgroup of $E( \overline{k} )$, and $\mit{\Gamma} \subseteq E( \overline{k} )$ the division group attached to ${\mit{\Gamma} }_{0} $. Fix an effective divisor $D$ of $E$ with support containing either: (i) at least two points whose difference is not torsion; or (ii) at least one point not in $\mit{\Gamma} $. We prove that the set of ‘integral division points on $E( \overline{k} )$’, i.e., the set of points of $\mit{\Gamma} $ which are $S$-integral on $E$ relative to $D, $ is finite. We also prove the ${ \mathbb{G} }_{\mathrm{m} } $-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.


2001 ◽  
Vol 53 (3) ◽  
pp. 449-469
Author(s):  
Amir Akbary ◽  
V. Kumar Murty

AbstractIn this paper, we study the Mordell-Weil group of an elliptic curve as a Galois module. We consider an elliptic curve E defined over a number field K whose Mordell-Weil rank over a Galois extension F is 1, 2 or 3. We show that E acquires a point (points) of infinite order over a field whose Galois group is one of Cn×Cm (n = 1, 2, 3, 4, 6, m = 1, 2), Dn×Cm (n = 2, 3, 4, 6, m = 1, 2), A4×Cm (m = 1, 2), S4 × Cm (m = 1, 2). Next, we consider the case where E has complex multiplication by the ring of integers of an imaginary quadratic field contained in K. Suppose that the -rank over a Galois extension F is 1 or 2. If ≠ and and h (class number of ) is odd, we show that E acquires positive -rank over a cyclic extension of K or over a field whose Galois group is one of SL2(/3), an extension of SL2(/3) by /2, or a central extension by the dihedral group. Finally, we discuss the relation of the above results to the vanishing of L-functions.


2012 ◽  
Vol 08 (01) ◽  
pp. 53-69 ◽  
Author(s):  
AMIR AKBARY ◽  
DRAGOS GHIOCA

We formulate a geometric analog of the Titchmarsh divisor problem in the context of abelian varieties. For any abelian variety A defined over ℚ, we study the asymptotic distribution of the primes of ℤ which split completely in the division fields of A. For all abelian varieties which contain an elliptic curve we establish an asymptotic formula for such primes under the assumption of Generalized Riemann Hypothesis. We explain how to derive an unconditional asymptotic formula in the case that the abelian variety is a complex multiplication elliptic curve.


2009 ◽  
Vol 05 (02) ◽  
pp. 229-256 ◽  
Author(s):  
A. BANDINI ◽  
I. LONGHI

Let F be a global field of characteristic p > 0, 𝔽/F a Galois extension with [Formula: see text] and E/F a non-isotrivial elliptic curve. We study the behavior of Selmer groups SelE(L)l (l any prime) as L varies through the subextensions of 𝔽 via appropriate versions of Mazur's Control Theorem. In the case l = p, we let 𝔽 = ∪ 𝔽d where 𝔽d/F is a [Formula: see text]-extension. We prove that Sel E(𝔽d)p is a cofinitely generated ℤp[[ Gal (ℤd/F)]]-module and we associate to its Pontrjagin dual a Fitting ideal. This allows to define an algebraic L-function associated to E in ℤp[[Gal(ℤ/F)]], providing an ingredient for a function field analogue of Iwasawa's Main Conjecture for elliptic curves.


Sign in / Sign up

Export Citation Format

Share Document