scholarly journals Integral division points on curves

2013 ◽  
Vol 149 (12) ◽  
pp. 2011-2035 ◽  
Author(s):  
David Grant ◽  
Su-Ion Ih

AbstractLet $k$ be a number field with algebraic closure $ \overline{k} $, and let $S$ be a finite set of primes of $k$ containing all the infinite ones. Let $E/ k$ be an elliptic curve, ${\mit{\Gamma} }_{0} $ be a finitely generated subgroup of $E( \overline{k} )$, and $\mit{\Gamma} \subseteq E( \overline{k} )$ the division group attached to ${\mit{\Gamma} }_{0} $. Fix an effective divisor $D$ of $E$ with support containing either: (i) at least two points whose difference is not torsion; or (ii) at least one point not in $\mit{\Gamma} $. We prove that the set of ‘integral division points on $E( \overline{k} )$’, i.e., the set of points of $\mit{\Gamma} $ which are $S$-integral on $E$ relative to $D, $ is finite. We also prove the ${ \mathbb{G} }_{\mathrm{m} } $-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.

2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


2010 ◽  
Vol 53 (1) ◽  
pp. 207-210
Author(s):  
CRISTIAN VIRDOL

Let E be an elliptic curve defined over a number field F, and let Σ be a finite set of finite places of F. Let L(s, E, ψ) be the L-function of E twisted by a finite-order Hecke character ψ of F. It is conjectured that L(s, E, ψ) has a meromorphic continuation to the entire complex plane and satisfies a functional equation s ↔ 2 − s. Then one can define the so called minimal order of vanishing ats = 1 of L(s, E, ψ), denoted by m(E, ψ) (see Section 2 for the definition).


2010 ◽  
Vol 06 (05) ◽  
pp. 1011-1025 ◽  
Author(s):  
SU-ION IH ◽  
THOMAS J. TUCKER

Let K be a number field with algebraic closure [Formula: see text], let S be a finite set of places of K containing the Archimedean places, and let φ be a Chebyshev polynomial. We prove that if [Formula: see text] is not preperiodic, then there are only finitely many preperiodic points [Formula: see text] which are S-integral with respect to α.


2006 ◽  
Vol 58 (4) ◽  
pp. 796-819 ◽  
Author(s):  
Bo-Hae Im

AbstractLet K be a number field, an algebraic closure of K and E/K an elliptic curve defined over K. In this paper, we prove that if E/K has a K-rational point P such that 2P ≠ O and 3P ≠ O, then for each σ ∈ Gal(/K), the Mordell–Weil group of E over the fixed subfield of under σ has infinite rank.


2019 ◽  
Vol 15 (09) ◽  
pp. 1895-1918
Author(s):  
Matthew Weidner

We study the behavior under twisting of the Selmer rank parities of a self-dual prime-degree isogeny on a principally polarized abelian variety defined over a number field, subject to compatibility relations between the twists and the isogeny. In particular, we study isogenies on abelian varieties whose Selmer rank parities are related to the rank parities of elliptic curves with [Formula: see text]-invariant 0 or 1728, assuming the Shafarevich–Tate conjecture. Using these results, we show how to classify the conjectural rank parities of all quartic or sextic twists of an elliptic curve defined over a number field, after a finite calculation. This generalizes the previous results of Hadian and Weidner on the behavior of [Formula: see text]-Selmer ranks under [Formula: see text]-twists.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2015 ◽  
Vol 11 (04) ◽  
pp. 1233-1257
Author(s):  
Tibor Backhausz ◽  
Gergely Zábrádi

Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p∞-Selmer group of E over any strongly admissible p-adic Lie extension K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K∞/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.


2019 ◽  
Vol 2019 (749) ◽  
pp. 65-86
Author(s):  
Pete L. Clark ◽  
Allan Lacy

Abstract We show that a nontrivial abelian variety over a Hilbertian field in which the weak Mordell–Weil theorem holds admits infinitely many torsors with period any given n>1 that is not divisible by the characteristic. The corresponding statement with “period” replaced by “index” is plausible but open, and it seems much more challenging. We show that for every infinite, finitely generated field K, there is an elliptic curve E_{/K} which admits infinitely many torsors with index any given n>1 .


2012 ◽  
Vol 167 (1) ◽  
pp. 69-89 ◽  
Author(s):  
Nikolai Nikolov ◽  
Rafael Rafailov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document