scholarly journals Congruence subgroups of braid groups

2020 ◽  
Vol 5 ◽  
pp. 1-26
Author(s):  
Tara E. Brendle
2018 ◽  
Vol 28 (02) ◽  
pp. 345-364
Author(s):  
Charalampos Stylianakis

In this paper, we give a description of the generators of the prime level congruence subgroups of braid groups. Also, we give a new presentation of the symplectic group over a finite field, and we calculate the symmetric quotients of the prime level congruence subgroups of braid groups. Finally, we find a finite generating set for the level-3 congruence subgroup of the braid group on three strands.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.


2011 ◽  
Vol 32 (12) ◽  
pp. 2930-2934
Author(s):  
Yun Wei ◽  
Guo-hua Xiong ◽  
Wan-su Bao ◽  
Xing-kai Zhang

2020 ◽  
pp. 107560
Author(s):  
Daciberg Lima Gonçalves ◽  
John Guaschi ◽  
Oscar Ocampo ◽  
Carolina de Miranda e Pereiro

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zhihao Duan ◽  
Kimyeong Lee ◽  
June Nahmgoong ◽  
Xin Wang

Abstract We study twisted circle compactification of 6d (2, 0) SCFTs to 5d $$ \mathcal{N} $$ N = 2 supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6d point of view respectively. The first is based on the blowup equations for the instanton partition function, from which in particular we determine explicitly the one-instanton contribution for all simple Lie groups. The second is based on the modular bootstrap program, and we propose a novel modular ansatz for the twisted elliptic genera that transform under the congruence subgroups Γ0(N) of SL(2, ℤ). We conjecture a vanishing bound for the refined Gopakumar-Vafa invariants of the genus one fibered Calabi-Yau threefolds, upon which one can determine the twisted elliptic genera recursively. We use our results to obtain the 6d Cardy formulas and find universal behaviour for all simple Lie groups. In addition, the Cardy formulas remain invariant under the twist once the normalization of the compact circle is taken into account.


2021 ◽  
Vol 195 (1) ◽  
pp. 15-33
Author(s):  
Karel Dekimpe ◽  
Daciberg Lima Gonçalves ◽  
Oscar Ocampo
Keyword(s):  

2019 ◽  
Vol 17 (1) ◽  
pp. 1631-1651
Author(s):  
Ick Sun Eum ◽  
Ho Yun Jung

Abstract After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight 3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending their work, we construct real-valued class invariants by using the singular values of the generalized Weber functions of level 5 and prove that their Galois traces are Fourier coefficients of a harmonic weak Maass form of weight 3/2 by using Shimura’s reciprocity law.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


Sign in / Sign up

Export Citation Format

Share Document