scholarly journals Convolutional Neural Network (CNN-SA) based Selective Amplification Model to Enhance Image Quality for Efficient Fire Detection

Author(s):  
Sagnik Sarkar ◽  
◽  
Aditya Sunil Menon ◽  
Gopalakrishnan T ◽  
Anil Kumar Kakelli
2021 ◽  
Vol 13 (19) ◽  
pp. 3859
Author(s):  
Joby M. Prince Czarnecki ◽  
Sathishkumar Samiappan ◽  
Meilun Zhou ◽  
Cary Daniel McCraine ◽  
Louis L. Wasson

The radiometric quality of remotely sensed imagery is crucial for precision agriculture applications because estimations of plant health rely on the underlying quality. Sky conditions, and specifically shadowing from clouds, are critical determinants in the quality of images that can be obtained from low-altitude sensing platforms. In this work, we first compare common deep learning approaches to classify sky conditions with regard to cloud shadows in agricultural fields using a visible spectrum camera. We then develop an artificial-intelligence-based edge computing system to fully automate the classification process. Training data consisting of 100 oblique angle images of the sky were provided to a convolutional neural network and two deep residual neural networks (ResNet18 and ResNet34) to facilitate learning two classes, namely (1) good image quality expected, and (2) degraded image quality expected. The expectation of quality stemmed from the sky condition (i.e., density, coverage, and thickness of clouds) present at the time of the image capture. These networks were tested using a set of 13,000 images. Our results demonstrated that ResNet18 and ResNet34 classifiers produced better classification accuracy when compared to a convolutional neural network classifier. The best overall accuracy was obtained by ResNet34, which was 92% accurate, with a Kappa statistic of 0.77. These results demonstrate a low-cost solution to quality control for future autonomous farming systems that will operate without human intervention and supervision.


2021 ◽  
Author(s):  
Mohamed Abdel-Zaher ◽  
Mustafa Hisham ◽  
Retaj Yousri ◽  
M. Saeed Darweesh

Author(s):  
Liyang Xiao ◽  
Wei Li ◽  
Ju Huyan ◽  
Zhaoyun Sun ◽  
Susan Tighe

This paper aims to develop a method of crack grid detection based on convolutional neural network. First, an image denoising operation is conducted to improve image quality. Next, the processed images are divided into grids of different, and each grid is fed into a convolutional neural network for detection. The pieces of the grids with cracks are marked and then returned to the original images. Finally, on the basis of the detection results, threshold segmentation is performed only on the marked grids. Information about the crack parameters is obtained via pixel scanning and calculation, which realises complete crack detection. The experimental results show that 30×30 grids perform the best with the accuracy value of 97.33%. The advantage of automatic crack grid detection is that it can avoid fracture phenomenon in crack identification and ensure the integrity of cracks.


2019 ◽  
Vol 79 (13-14) ◽  
pp. 9083-9099 ◽  
Author(s):  
Faisal Saeed ◽  
Anand Paul ◽  
P. Karthigaikumar ◽  
Anand Nayyar

Sign in / Sign up

Export Citation Format

Share Document