scholarly journals Application of the Flow Curvature Method in Lorenz-Haken Model

2020 ◽  
Vol 6 (1) ◽  
pp. 33-48
Author(s):  
A. K. M. Nazimuddin ◽  
◽  
Md. Showkat Ali ◽  
Keyword(s):  
Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari

The assessment of robust CFD techniques is casting new light on the aerodynamics of airfoils rotating around an axis orthogonal to flow direction, with particular reference to flow curvature effects and stall mechanisms. In particular, Darrieus wind turbines’ designers are taking profit from these new discovers to improve the aerodynamic design of the rotors, in view of an increase of the overall efficiency and a reduction of the structural stresses on the blades. A controversial design parameter for Darrieus turbines, especially in case of small-size rotors, is represented by the location of the blade-spoke connection along the chord. The most common solution is indeed to place the connection at approximately airfoil’s quarter chord, i.e. where the pressure center is commonly located for low incidence angles. In some cases, however, the blade is connected at middle chord due to symmetry or aesthetic reasons. In some small turbines, innovative designs have even disregarded this parameter. Even if one can argue that the blade connection point is about to have some aerodynamic effects on the turbine’s performance, the real impact of this important design parameter is often not fully understood. The present study makes use of extensive CFD simulations on a literature case study, using a NACA 0021 airfoil, to assess the influence of the blade-spoke connection point. In particular, the differences in terms of power coefficient curve of the turbine, optimal tip-speed ratio, torque profiles and stresses on the connection are analyzed and discussed. Detailed flow analyses are also shown for azimuthal positions of particular interest. Results on the selected case study showed that the middle-chord blade-spoke connection point seems to guarantee a higher performance of the rotor, even if additional solicitation is applied to the connection itself. It is further shown that the same performance can indeed be obtained with the airfoil attached at quarter chord and properly pitched. By doing so, the stresses are contained and the performance is maximized.


1995 ◽  
Author(s):  
D. W. Bailey ◽  
K. M. Britchford ◽  
J. F. Carrotte ◽  
S. J. Stevens

An experimental investigation has been carried out to determine the aerodynamic performance of an annular S-shaped duct representative of that used to connect the compressor spools of aircraft gas turbine engines. For inlet conditions in which boundary layers are developed along an upstream entry length the static pressure, shear stress and velocity distributions are presented. The data shows that as a result of flow curvature significant streamwise pressure gradients exist within the duct, with this curvature also affecting the generation and suppression of turbulence. The stagnation pressure loss within the duct is also assessed and is consistent with the measured distributions of shear stress. More engine representative conditions are provided by locating a single stage compressor at inlet to the duct. Relative to the naturally developed inlet conditions the flow within the duct is less likely to separate, but mixing out of the compressor blade wakes increases the measured duct loss. With both types of inlet conditions the effect of a radial strut, such as that used for carrying loads and engine services, is also described both in terms of the static pressure distribution along the strut and its contribution to overall loss.


2015 ◽  
Vol 45 (1) ◽  
pp. 313-326 ◽  
Author(s):  
Daniel L. Rudnick ◽  
Ganesh Gopalakrishnan ◽  
Bruce D. Cornuelle

AbstractCirculation in the Gulf of Mexico (GoM) is dominated by the Loop Current (LC) and by Loop Current eddies (LCEs) that form at irregular multimonth intervals by separation from the LC. Comparatively small cyclonic eddies (CEs) are thought to have a controlling influence on the LCE, including its separation from the LC. Because the CEs are so dynamic and short-lived, lasting only a few weeks, they have proved a challenge to observe. This study addresses that challenge using underwater gliders. These gliders’ data and satellite sea surface height (SSH) are used in a four-dimensional variational (4DVAR) assimilation in the Massachusetts Institute of Technology (MIT) general circulation model (MITgcm). The model serves two purposes: first, the model’s estimate of ocean state allows the analysis of four-dimensional fields, and second, the model forecasts are examined to determine the value of glider data. CEs have a Rossby number of about 0.2, implying that the effects of flow curvature, cyclostrophy, to modify the geostrophic momentum balance are slight. The velocity field in CEs is nearly depth independent, while LCEs are more baroclinic, consistent with the CEs origin on the less stratified, dense side of the LCE. CEs are formed from water in the GoM, rather than the Atlantic water that distinguishes the LCE. Model forecasts are improved by glider data, using a quality metric based on satellite SSH, with the best 2-month GoM forecast rivaling the accuracy of a global hindcast.


Author(s):  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Riccardo Maleci ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari

Darrieus wind turbines are experiencing a renewed interest in the wind energy scenario, in particular whenever small and medium-size installations are considered. In these contexts, the average wind speeds are generally quite low due to scale effects and therefore the most exploited design choices for the turbines are the H-shape configuration, as the entire blade can take advantage of the maximum rotational radius, and high chord to radius ratios, in order to ensure suitable Reynolds numbers on the airfoils. By doing so, the aerodynamic effects induced by the motion of the airfoils in a curved flowpath become more evident and the airfoils themselves have to be designed to compensate these phenomena if conventional design tools based on the BEM theory are used. In this study, fully unsteady 2D simulations were exploited to analyze a three-bladed H-Darrieus wind turbine in order to define the real flow structure and its effects on the turbine performance; in detail, the influence of both the virtual camber and the virtual incidence were investigated. CFD results were supported by experimental data collected on full-scale models reproducing two different airfoil mountings. Finally, the proper design criteria to compensate these phenomena are proposed and their benefits on a conventional simulation with a BEM approach are discussed.


2013 ◽  
Vol 23 (04) ◽  
pp. 1330010 ◽  
Author(s):  
JEAN-MARC GINOUX ◽  
JAUME LLIBRE ◽  
LEON O. CHUA

The aim of this work is to extend Benoît's theorem for the generic existence of "canards" solutions in singularly perturbed dynamical systems of dimension three with one fast variable to those of dimension four. Then, it is established that this result can be found according to the Flow Curvature Method. Applications to Chua's cubic model of dimension three and four enable to state the existence of "canards" solutions in such systems.


Sign in / Sign up

Export Citation Format

Share Document