scholarly journals Retrofitting and Rehabilitation in Steel Moment-resisting Frame with Prestressed Concrete Slab against Progressive Collapse Potential

2022 ◽  
Vol 35 (1) ◽  
2019 ◽  
Vol 105 ◽  
pp. 896-918 ◽  
Author(s):  
Hussein M. Elsanadedy ◽  
Yousef A. Al-Salloum ◽  
Tarek H. Almusallam ◽  
Tuan Ngo ◽  
Husain Abbas

1999 ◽  
Vol 26 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Aiman Biddah ◽  
Arthur C Heidebrecht

Steel moment resisting frames have been considered as excellent systems for resisting seismic loads. However, after recent earthquakes (e.g., Northridge, California, in 1994 and Kobe, Japan, in 1995) the confidence in this structural system was reduced as a result of various types of damage that moment resisting steel frames suffered. This paper presents the results of the evaluation of seismic level of protection afforded to steel moment resisting frame buildings designed in accordance with the National Building Code of Canada. Six- and 10-storey office buildings located in a region of intermediate seismic hazard are designed in accordance with the current Canadian code provisions. Three different design philosophies are considered, namely strong column - weak beam (SCWB), weak column - strong beam (WCSB), and strong column - weak panel zone (SCWP). The performance of these frames is evaluated dynamically by subjecting an inelastic model to an ensemble of 12 actual strong ground motion records. The model takes into account both connection flexibility and panel zone shear deformation. The results are presented in terms of response parameters determined from static pushover analyses, as well as statistical measures of the maximum response parameters determined from the inelastic dynamic analyses. The computed performance of the frames is evaluated in order to assess both the overall level of protection of the frames and the preferred design philosophy. It is concluded that a well-designed and well-detailed ductile moment resisting frame designed using either the SCWB or SCWP design philosophy can withstand ground motions of twice the design level with very little likelihood of collapse, whereas a frame designed using the WCSB approach is ill-conditioned and may develop a collapse mechanism at an excitation level well below twice the design level.Key words: seismic, ductile, steel, frame buildings, performance, design, ductility, damage, inelastic, dynamic.


2021 ◽  
Vol 15 (57) ◽  
pp. 138-159
Author(s):  
Abbasali Sadeghi ◽  
Hamid Kazemi ◽  
Maysam Samadi

The ground external columns of buildings are vulnerable to the extreme actions such as a vehicle collision. This event is a common scenario of buildings' damages. In this study, a nonlinear model of 2-story steel moment-resisting frame (SMRF) is made in OpenSees software. This paper aims investigating the reliability analysis of aforementioned structure under heavy vehicle impact loadings by Monte Carlo Simulation (MCS) in MATLAB software. To reduce computational costs, meta-model techniques such as Kriging, Polynomial Response Surface Methodology (PRSM) and Artificial Neural Network (ANN) are applied and their efficiency is assessed. At first, the random variables are defined. Then, the sensitivity analyses are performed using MCS and Sobol's methods. Finally, the failure probabilities and reliability indices of studied frame are presented under impact loadings with various collision velocities at different performance levels and thus, the behavior of selected SMRF is compared by using fragility curves. The results showed that the random variables such as mass and velocity of vehicle and yield strength of used materials were the most effective parameters in the failure probability computation. Among the meta-models, Kriging can estimate the failure probability with the least error, sample number with minimum computer processing time, in comparison with MCS.


Sign in / Sign up

Export Citation Format

Share Document