Probabilistic seismic analysis of steel moment-resisting frame structure including a damaged column

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 187-200
Author(s):  
Abbasali Sadeghi ◽  
Hamid Kazemi ◽  
Maysam Samadi
2021 ◽  
Vol 15 (57) ◽  
pp. 138-159
Author(s):  
Abbasali Sadeghi ◽  
Hamid Kazemi ◽  
Maysam Samadi

The ground external columns of buildings are vulnerable to the extreme actions such as a vehicle collision. This event is a common scenario of buildings' damages. In this study, a nonlinear model of 2-story steel moment-resisting frame (SMRF) is made in OpenSees software. This paper aims investigating the reliability analysis of aforementioned structure under heavy vehicle impact loadings by Monte Carlo Simulation (MCS) in MATLAB software. To reduce computational costs, meta-model techniques such as Kriging, Polynomial Response Surface Methodology (PRSM) and Artificial Neural Network (ANN) are applied and their efficiency is assessed. At first, the random variables are defined. Then, the sensitivity analyses are performed using MCS and Sobol's methods. Finally, the failure probabilities and reliability indices of studied frame are presented under impact loadings with various collision velocities at different performance levels and thus, the behavior of selected SMRF is compared by using fragility curves. The results showed that the random variables such as mass and velocity of vehicle and yield strength of used materials were the most effective parameters in the failure probability computation. Among the meta-models, Kriging can estimate the failure probability with the least error, sample number with minimum computer processing time, in comparison with MCS.


2018 ◽  
Vol 763 ◽  
pp. 557-565
Author(s):  
Hiroyuki Tagawa ◽  
Gregory A. MacRae

Building structures around the world have been designed using various framing methods. In Japan, the two-way moment-resisting frame structure, which is designed as a 3D seismic frame with beams connected to the columns, with moment connections in both directions, is traditionally constructed. In contrast, in the United States and many other countries in high seismic regions, the one-way moment-resisting frame structure, which is designed as separate seismic and gravity frame structure with only a few expensive moment connections in seismic frames, is typically constructed. Structures with these different framing systems are likely to exhibit different seismic response and collapse mechanism when subjected to large earthquake excitation. However, the simulation up to complete collapse has almost not been conducted and safety margin to complete collapse of these different framing systems has not been sufficiently understood. In this study, seismic simulation of U.S. and Japanese type three-story steel moment-resisting frame structures is conducted using general-purpose finite element analysis program. Practical macro models used for the simulation are based on beam and shell elements. It is found that composite effects of floor slab accelerate column yielding in both U.S. and Japanese type steel frame structures and drift concentration may occur at relatively small ground motion level and eventually result in complete collapse.


Author(s):  
Timothy Graf ◽  
James O. Malley ◽  
Mark Sinclair ◽  
James Newell ◽  
Colin Blaney ◽  
...  

1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


1999 ◽  
Vol 26 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Aiman Biddah ◽  
Arthur C Heidebrecht

Steel moment resisting frames have been considered as excellent systems for resisting seismic loads. However, after recent earthquakes (e.g., Northridge, California, in 1994 and Kobe, Japan, in 1995) the confidence in this structural system was reduced as a result of various types of damage that moment resisting steel frames suffered. This paper presents the results of the evaluation of seismic level of protection afforded to steel moment resisting frame buildings designed in accordance with the National Building Code of Canada. Six- and 10-storey office buildings located in a region of intermediate seismic hazard are designed in accordance with the current Canadian code provisions. Three different design philosophies are considered, namely strong column - weak beam (SCWB), weak column - strong beam (WCSB), and strong column - weak panel zone (SCWP). The performance of these frames is evaluated dynamically by subjecting an inelastic model to an ensemble of 12 actual strong ground motion records. The model takes into account both connection flexibility and panel zone shear deformation. The results are presented in terms of response parameters determined from static pushover analyses, as well as statistical measures of the maximum response parameters determined from the inelastic dynamic analyses. The computed performance of the frames is evaluated in order to assess both the overall level of protection of the frames and the preferred design philosophy. It is concluded that a well-designed and well-detailed ductile moment resisting frame designed using either the SCWB or SCWP design philosophy can withstand ground motions of twice the design level with very little likelihood of collapse, whereas a frame designed using the WCSB approach is ill-conditioned and may develop a collapse mechanism at an excitation level well below twice the design level.Key words: seismic, ductile, steel, frame buildings, performance, design, ductility, damage, inelastic, dynamic.


Sign in / Sign up

Export Citation Format

Share Document