Relationships between carbon source utilization of soil microbial communities and environmental factors in natural secondary forest in subtropical area, China

2012 ◽  
Vol 32 (6) ◽  
pp. 1839-1845 ◽  
Author(s):  
王芸 WANG Yun ◽  
欧阳志云 OUYANG Zhiyun ◽  
郑华 ZHENG Hua ◽  
王效科 WANG Xiaoke ◽  
陈法霖 CHEN Falin ◽  
...  
2003 ◽  
Vol 69 (6) ◽  
pp. 3593-3599 ◽  
Author(s):  
Colin D. Campbell ◽  
Stephen J. Chapman ◽  
Clare M. Cameron ◽  
Mitchell S. Davidson ◽  
Jacqueline M. Potts

ABSTRACT Sole-carbon-source tests (Biolog), designed to identify bacteria, have become very popular for metabolically fingerprinting soil microbial communities, despite disadvantages associated with the use of carbon source profiles that primarily select for fast-growing bacteria. In this paper we describe the use of an alternative method that combines the advantages of the Biolog community-level physiological profile (CLPP) method, in which microtiter-based detection plates are used, with the ability to measure carbon dioxide evolution from whole soil. This method facilitates measurement over short periods of time (4 to 6 h) and does not require the extraction and culturing of organisms. Deep-well microtiter plates are used as test wells into which soil is placed. The apparatus to fill the deep-well plates and interface it with a second removable detection plate is described. Two detection systems, a simple colorimetric reaction in absorbent alkali and scintillation counting with radioactive carbon sources, are described. The methods were compared to the Biolog-CLPP system by using soils under different vegetation types and soil treated with wastewater sludge. We aimed to test the hypothesis that using whole soil would have specific advantages over using extracts in that more immediate responses to substrates could be obtained that would reflect activity rather than growth. The whole-soil method was more rapid and gave earlier detection of C source use. Also, the metabolic fingerprints obtained could discriminate between sludge treatments.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5648 ◽  
Author(s):  
Jiayu Li ◽  
Jiayi Lin ◽  
Chenyu Pei ◽  
Kaitao Lai ◽  
Thomas C. Jeffries ◽  
...  

Eucalyptus is harvested for wood and fiber production in many tropical and sub-tropical habitats globally. Plantation has been controversial because of its influence on the surrounding environment, however, the influence of massive Eucalyptus planting on soil microbial communities is unclear. Here we applied high-throughput sequencing of the 16S rRNA gene to assess the microbial community composition and diversity of planting chronosequences, involving two, five and ten years of Eucalyptus plantation, comparing to that of secondary-forest in South China. We found that significant changes in the composition of soil bacteria occurred when the forests were converted from secondary-forest to Eucalyptus. The bacterial community structure was clearly distinct from control and five year samples after Eucalyptus was grown for 2 and 10 years, highlighting the influence of this plantation on local soil microbial communities. These groupings indicated a cycle of impact (2 and 10 year plantations) and low impact (5-year plantations) in this chronosequence of Eucalyptus plantation. Community patterns were underpinned by shifts in soil properties such as pH and phosphorus concentration. Concurrently, key soil taxonomic groups such as Actinobacteria showed abundance shifts, increasing in impacted plantations and decreasing in low impacted samples. Shifts in taxonomy were reflected in a shift in metabolic potential, including pathways for nutrient cycles such as carbon fixation, which changed in abundance over time following Eucalyptus plantation. Combined these results confirm that Eucalyptus plantation can change the community structure and diversity of soil microorganisms with strong implications for land-management and maintaining the health of these ecosystems.


Sign in / Sign up

Export Citation Format

Share Document