scholarly journals Imputing Forest Structure Attributes from Stand Inventory and Remotely Sensed Data in Western Oregon, USA

2014 ◽  
Vol 60 (2) ◽  
pp. 253-269 ◽  
Author(s):  
Andrew T. Hudak ◽  
A. Tod Haren ◽  
Nicholas L. Crookston ◽  
Robert J. Liebermann ◽  
Janet L. Ohmann
2020 ◽  
Vol 12 (13) ◽  
pp. 2126 ◽  
Author(s):  
Zhaoshang Xu ◽  
Guang Zheng ◽  
L. Monika Moskal

Accurately mapping forest effective leaf area index (LAIe) at the landscape level is a crucial step to better simulate various ecological and physiological processes such as photosynthesis, respiration, transpiration, and precipitation interception. The LAIe products obtained from two-dimensional (2-D) remotely sensed optical imageries are usually biased due to their inability to identify the vertical forest structure and eliminate the effects of forest background (i.e., shrubs, grass, snow, and bare earth). In this study, we first stratified the forest overstory and background layers and generated a forest background mask layer based on the structural information implicitly contained within the aerial laser scanning (ALS) data. We improved the retrieval accuracy of LAIe by combining light detection and ranging (Lidar)-based three dimensional (3-D) structural and 2-D spectral information. Then, we obtained the improved final LAIe estimation result by masking the forest background pixels from the optical remotely sensed imageries. Our results showed that: (1) Removing forest background information could effectively (R2 increase from 20% to 30%) improve the estimation accuracy of optical-based forest LAIe depending on forest structure characteristics. (2) The forest background in the forest stands with low canopy cover showed more apparent effects on LAIe estimation compared with the forest stands with a high canopy cover. (3) The combination of ALS and optical remotely sensed data could produce the best LAIe retrieval result effectively by removing the forest background information.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


1986 ◽  
Vol 20 (1) ◽  
pp. 31-41 ◽  
Author(s):  
P.J. Curran ◽  
H.D. Williamson

Sign in / Sign up

Export Citation Format

Share Document