scholarly journals Description of Cystodiscus elachistocleis sp. nov. (Cnidaria: Myxosporea) parasitizing the gallbladder of Elachistocleis cesarii from Brazil, based on morphological and molecular analyses

2021 ◽  
Vol 775 ◽  
pp. 107-118
Author(s):  
Diego Henrique Mirandola Dias Vieira ◽  
Letícia Pereira Úngari ◽  
Edna Paulino De Alcantara ◽  
Enzo Emmerich ◽  
André Luiz Quagliatto Santos ◽  
...  

Numerous pseudoplasmodia containing myxospores belonging to the genus Cystodiscus were found in the gallbladder of Elachistocleis cesarii from Mato Grosso State, Brazil. Herein, we describe Cystodiscus elachistocleis sp. nov., using morphological and small subunit ribosomal DNA sequences. The mature myxospores were ellipsoid to ovoid, measuring in average 10.6 (9.8–11.2) μm in length and 6.2 (5.6–6.6) μm in width. Polar capsules were pyriform and equal in size measuring in average 3.6 (2.8–4.3) μm in length and 2.6 (2.2–3.1) μm in width. Polar filaments had 2–4 coils. The myxospores had 3–5 transverse ridges. The phylogenetic analysis showed Cystodiscus elachistocleis sp. nov. as a sister species of Cystodiscus cf. immersus 1, in a subclade formed by species that parasitize the amphibians gallbladder. This is the first species of Cystodiscus described parasitizing a species of Elachistocleis and the third species of Cystodiscus described in Brazil.

2009 ◽  
Vol 42 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Paweł CZARNOTA ◽  
Beata GUZOW-KRZEMIŃSKA

AbstractThe phylogeny of the Micarea prasina group was investigated using mitochondrial small subunit ribosomal DNA sequences from 14 taxa representing this group, four other members of the genus Micarea, and Psilolechia lucida as an outgroup. A total of 31 new mtSSU rDNA sequences were generated, including 10 from the M. micrococca complex. Bayesian, maximum parsimony (MP) and maximum likelihood (ML) methods were used to analyse the data. The results show that M. micrococca is not monophyletic and forms three strongly supported lineages: 1) M. micrococca s. str., 2) M. byssacea (Th. Fr.) Czarnota, Guzow-Krzemińska & Coppins comb. nov., and 3) a putative taxon that requires further studies. Micarea viridileprosa is a sister species to M. micrococca s. str. and the recently described M. nowakii is a sister species to M. prasina s. str. The placement of M. tomentosa within the M. prasina group is confirmed. Micarea hedlundii appears to be more closely related to the M. micrococca complex than M. prasina s. str. Descriptions, illustrations, taxonomic remarks, distribution and habitat data for M. micrococca s. str. and M. byssacea are provided. A lectotype for Biatora byssacea Hampe non Zwackh and a neotype for Catillaria prasina β [var.] byssacea are selected.


2000 ◽  
Vol 78 (11) ◽  
pp. 1450-1459 ◽  
Author(s):  
Paula T DePriest ◽  
Natalia V Ivanova ◽  
Dianne Fahselt ◽  
Vagn Alstrup ◽  
Andrea Gargas

Ribosomal DNA sequences were amplified from subfossils of the ascolichen Umbilicaria cylindrica (L.) Delise ex Duby collected at the ablating edges of Greenland glaciers. Surprisingly, phylogenetic analysis indicated that the amplified rDNA sequences were not closely related to those of the lichen-forming fungus but rather represented two groups of psychrophilic basidiomycetes (orders Cystofilobasidiales and Sporidiales) and one group of ascomycetes (order Leotiales). Two of these groups, the Sporidiales and the Leotiales, include other fungi previously detected in DNA extracted from the grass clothing of the Tyrolean Iceman desiccated and frozen for over 3000 years and also in 2000- and 4000-year-old ice core samples from northern Greenland. Large subunit ribosomal DNA sequences representing the group Cystofilobasidiales were nearly identical to those of the basidioyeast saprobe Mrakia frigida. The adjacent internal transcribed spacer sequence was more than 98% similar to those from three samples of U. cylindrica from different sites that had been subjected to ice burial for various lengths of time, suggesting they also were Mrakia sequences. Although ancient contamination of multiple U. cylindrica specimens with fungi such as Mrakia cannot be ruled out, it is more probable that saprobic colonization of the subfossil tissues by psychrophilic fungi proceeded during recent ice melt.Key words: ancient DNA, small subunit ribosomal DNA, 18S ribosomal DNA, phylogenetic analysis, psychrophilic fungi, lichen-forming fungi.


Nematology ◽  
2003 ◽  
Vol 5 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Peter Mullin ◽  
Timothy Harris ◽  
Thomas Powers

AbstractThe systematic position of Campydora Cobb, 1920, which possesses many unique morphological features, especially in pharyngeal structure and stomatal armature, has long been a matter of uncertainty with the 'position of the Campydorinae' (containing only Campydora) being questionable. A review of the morphology of C. demonstrans, the only nominal species of Campydora concluded that the species warranted placement as the sole member of a monotypic suborder, Campydorina, in the order Dorylaimida. Others placed Campydorina in the order Enoplida. We conducted phylogenetic analyses, using 18s small subunit ribosomal DNA sequences generated from a number of taxa in the subclasses Enoplia and Dorylaimia, to evaluate these competing hypotheses. Although precise taxonomic placement of the genus Campydora and the identity of its closest living relatives is in need of further investigation, our analyses, under maximum parsimony, distance, and maximum likelihood criteria, unambiguously indicate that Campydora shares a common, more recent, ancestry with genera such as Alaimus, Pontonema, Tripyla and Ironus (Enoplida), rather than with any members of Dorylaimida, Mononchida or Triplonchida.


Sign in / Sign up

Export Citation Format

Share Document