scholarly journals Identifying leaf rust resistance gene Lr19 in durum wheat using simple sequence repeat (SSR) marker

2011 ◽  
Vol 10 (44) ◽  
pp. 8716-8719 ◽  
Author(s):  
Kassem Mohammad ◽  
El Ahmed Ahmed ◽  
S Hakim Mohammad ◽  
Al Saleh Ahmad ◽  
EL Khalifeh Mohammad ◽  
...  
Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 469-473 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
V. Garcia ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) and only a few designated resistance genes are known to occur in this crop. A dominant leaf rust resistance gene in the Chilean durum cv. Llareta INIA was mapped to chromosome arm 7BL through bulked segregant analysis using the amplified fragment length polymorphism (AFLP) technique, and by mapping three polymorphic markers in the common wheat (T. aestivum) International Triticeae Mapping Initiative population. Several simple sequence repeat (SSR) markers, including Xgwm344-7B and Xgwm146-7B, were associated with the leaf rust resistance gene. Resistance response and chromosomal position indicated that this gene is likely to be Lr14a. The SSR markers Xgwm344-7B and Xgwm146-7B and one AFLP marker also differentiated common wheat cv. Thatcher from the near-isogenic line with Lr14a, as well as durum ‘Altar C84’ from durum wheat with Lr14a. This is the first report of the presence of Lr14a in durum wheat, although the gene originally was transferred from emmer wheat ‘Yaroslav’ to common wheat. Lr14a is also present in CIMMYT-derived durum ‘Somateria’ and effective against Mexican and other P. triticina races of durum origin. Lr14a should be deployed in combination with other effective leaf rust resistance genes to prolong its effectiveness in durum wheat.


Crop Science ◽  
2007 ◽  
Vol 47 (4) ◽  
pp. 1459-1466 ◽  
Author(s):  
Sybil A. Herrera-Foessel ◽  
Ravi P. Singh ◽  
Julio Huerta-Espino ◽  
Manilal William ◽  
Garry Rosewarne ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1650-1654 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
A. Djurle ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) worldwide, and the most effective way to control it is through the use of resistant cultivars. A partially dominant leaf rust resistance gene present in the International Maize and Wheat Improvement Center-derived Chilean cv. Guayacan INIA and its sister line Guayacan 2 was mapped to chromosome arm 6BS by identifying linked amplified fragment length polymorphisms (AFLPs) and mapping two of the molecular markers in common wheat (T. aestivum) linkage maps of the International Triticeae Mapping Initiative and Oligoculm × Fukuho-komugi populations. Comparison of infection type responses of the two resistant durums with common wheat testers carrying the previously mapped resistance genes Lr36 and Lr53 on 6BS, and their chromosomal positions, indicated that the resistance gene in durum wheat Guayacan INIA is a new leaf rust resistance gene, which was designated as Lr61. Gene Lr61 is effective against the P. triticina race BBG/BN predominant in northwestern Mexico and other races infecting durum wheat in various countries.


2018 ◽  
Vol 131 (5) ◽  
pp. 1091-1098 ◽  
Author(s):  
Naeela Qureshi ◽  
Harbans Bariana ◽  
Vikas Venu Kumran ◽  
Sivasamy Muruga ◽  
Kerrie L. Forrest ◽  
...  

2004 ◽  
Vol 1 (3) ◽  
pp. 139-142 ◽  
Author(s):  
Zhang Li-Rong ◽  
Xu Da-Qing ◽  
Yang Wen-Xiang ◽  
Liu Da-Qun

AbstractInter-simple sequence repeat (ISSR) analysis was carried out in Thatcher, 20 near-isogenic lines (NILs) containing respectively different genes conferring resistance against wheat leaf rust (Puccinia recondite f.sp. tritici), three materials carrying Lr37 and three materials without Lr37. All of the 100 ISSR primers showed clear amplification products. Two of them amplified the polymorphic DNA bands in the NILs, Thatcher and Lr37/6*Thatcher. The polymorphic bands were named UBC812-1200 and UBC848-700, respectively. The three materials with and without Lr37 were detected in tests using the two primers UBC812 and UBC848. Results also showed that only band UBC812-1200 was amplified in all resistant and absent in all susceptible materials. This suggests that UBC812-1200 marker is linked to the resistance gene Lr37. The genetic linkage of the polymorphic marker with Lr37 was tested using a segregating F2 population (128 plants) derived from a cross between the leaf rust-resistant Lr37/6*Thatcher and the susceptible cultivar Thatcher. The ISSR marker UBC812-1200 showed co-segregation to the Lr37 resistance gene. It could be used in molecular marker-assisted selection in a wheat breeding programme for leaf rust resistance.


2006 ◽  
Vol 5 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Xing LI ◽  
Wen-xiang YANG ◽  
Ya-ning LI ◽  
Da-qun LIU ◽  
Hong-fei YAN ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 655-664 ◽  
Author(s):  
Li Huang ◽  
Steven A Brooks ◽  
Wanlong Li ◽  
John P Fellers ◽  
Harold N Trick ◽  
...  

Abstract We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many crop-specific agronomic traits located in the gene-rich regions of bread wheat.


Sign in / Sign up

Export Citation Format

Share Document