scholarly journals Biological control of potential antagonistic bacteria isolates to restrict Magnaporthe grisea infection on rice

2017 ◽  
Vol 11 (27) ◽  
pp. 1108-1119 ◽  
Author(s):  
P. Tokpah David ◽  
Li Hongwei ◽  
T. Newmah John ◽  
Page Zipporah ◽  
Luther Zogbo ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.


2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Linlin Zhang ◽  
Chaomin Sun

ABSTRACTRice blast caused by the phytopathogenMagnaporthe griseaposes a serious threat to global food security and is difficult to control.Bacillusspecies have been extensively explored for the biological control of many fungal diseases. In the present study, the marine bacteriumBacillus subtilisBS155 showed a strong antifungal activity againstM. grisea. The active metabolites were isolated and identified as cyclic lipopeptides (CLPs) of the fengycin family, named fengycin BS155, by the combination of high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Analyses using scanning and transmission electron microscopy revealed that fengycin BS155 caused morphological changes in the plasma membrane and cell wall ofM. griseahyphae. Using comparative proteomic and biochemical assays, fengycin BS155 was demonstrated to reduce the mitochondrial membrane potential (MMP), induce bursts of reactive oxygen species (ROS), and downregulate the expression level of ROS-scavenging enzymes. Simultaneously, fengycin BS155 caused chromatin condensation in fungal hyphal cells, which led to the upregulation of DNA repair-related protein expression and the cleavage of poly(ADP-ribose) polymerase (PARP). Altogether, our results indicate that fengycin BS155 acts by inducing membrane damage and dysfunction of organelles, disrupting MMP, oxidative stress, and chromatin condensation, resulting inM. griseahyphal cell death. Therefore, fengycin BS155 and its parent bacterium are very promising candidates for the biological control ofM. griseaand the associated rice blast and should be further investigated as such.IMPORTANCERice (Oryza sativaL.) is the most important crop and a primary food source for more than half of the world's population. Notably, scientists in China have developed several types of rice that can be grown in seawater, avoiding the use of precious freshwater resources and potentially creating enough food for 200 million people. The plant-affecting fungusMagnaporthe griseais the causal agent of rice blast disease, and biological rather than chemical control of this threatening disease is highly desirable. In this work, we discovered fengycin BS155, a cyclic lipopeptide material produced by the marine bacteriumBacillus subtilisBS155, which showed strong activity againstM. grisea. Our results elucidate the mechanism of fengycin BS155-mediatedM. griseagrowth inhibition and highlight the potential ofB. subtilisBS155 as a biocontrol agent againstM. griseain rice cultivation under both fresh- and saltwater conditions.


2010 ◽  
Vol 50 (4) ◽  
pp. 419-424 ◽  
Author(s):  
B. Hameeda ◽  
G. Harini ◽  
O. P. Rupela ◽  
J. V. D. K. Kumar Rao ◽  
Gopal Reddy

2009 ◽  
Vol 49 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Fernando Haddad ◽  
Luiz A. Maffia ◽  
Eduardo S.G. Mizubuti ◽  
Hudson Teixeira

1970 ◽  
Vol 45 (3) ◽  
pp. 225-232 ◽  
Author(s):  
MA Bashar ◽  
MA Hossain ◽  
MM Rahman ◽  
MN Uddin ◽  
MN Begum

The study was made to detect and identify antagonistic bacteria to control Rhizoctonia solani, a causal organism of sheath blight (ShB) disease of rice. Isolation of antagonistic bacteria was done from ShB infected rice leaf collected from the districts of Gazipur, Rajshahi, Bogra and Comilla. Fifty isolates of bacteria were isolated. These isolates were tested for antagonism against ShB pathogen of in PDA medium. Among the isolates of antagonistic bacteria (both fluorescent and non fluorescent), eleven produced more than 15 mm inhibition zone, were selected for this study. Remarkable inhibition zone producing ten isolates were selected to observe their antagonistic behaviour by soaking the sclerotia of Rhizoctonia solani and rice seedlings in different hours into bacterial suspension of 3.84 x 107 CFU/ml. Both the in vitro and in vivo rom showed that the sclerotial germination and sheath blight symptom expression were delayed 6-9 days. Soaking of both seedlings and sclerotia with the test bacteria was found most effective to control ShB (38% - 100%) than soaking of seedlings alone with bacterial suspension at different hours. However, BanShbFPS5 (2)B, BanShb738(3), BanShb738(2) and BanShb581(1), the four antagonistic bacterial isolates could be applied as biological agent to control sheath blight disease of rice and they could control sheath blight disease development and could delay the epidemics of the disease. Key words: Biological control; Sheath blight disease; Rhizoctonia solani; Antagonistic bacteria DOI: 10.3329/bjsir.v45i3.6529Bangladesh J. Sci. Ind. Res. 45(3), 225-232, 2010


Sign in / Sign up

Export Citation Format

Share Document