scholarly journals Spectral depth analysis for determining the depth to basement of magnetic source rocks over Nkalagu and Igumale areas of the Lower Benue Trough, Nigeria

2017 ◽  
Vol 12 (19) ◽  
pp. 224-234 ◽  
Author(s):  
Joachims C. Ikeh ◽  
G. Z. Ugwu ◽  
K. Asielue
Author(s):  
A. T. Bolarinwa ◽  
Sunday Ojochogwu Idakwo ◽  
D. L. Bish

Combined methods for mineralogical identifications were used to characterise the clay deposits within the Lower Benue Trough of Nigeria to interpret paleo-environmental conditions, the paleoclimatic significance of the trough, and effects of weathering on the minerals as factors that favour its deposition/accumulation within the trough which host other important industrial minerals like coal, barite, limestone etc. Bulk-sample random-powder XRD data and data for clay fractions deposited onto zero-background quartz plates were measured. The samples contained kaolinite, vermiculite, and traces of smectite, and the non-clay phases included quartz, microcline, and muscovite. All samples were unaffected after glycolation, confirming the absence of significant smectite. Muscovite was characterized by the nature of its 10 Å basal peak with a width of <0.10° 2θ, which was very sharp. DTA/TGA results support the presence of kaolinite, and the characteristic kaolinite O-H, Al-OH, Si-OH and Si-O-Al FTIR bands also confirmed its presence. Vermicular and book-like morphologies were observed under the SEM, typical of kaolinitic clay from in situ alteration. High kaolinite abundance in these sediments is consistent with intense weathering of parent rocks rich in Al under wet/tropical paleo-climatic conditions with fresh and/or brackish water conditions in a continental setting. The variety of observed morphologies suggests that the deposits suffered more of chemical weathering. The clay deposits in Lower Benue Trough are quartz-rich, kaolinitic and derived from the chemical weathering of Al-rich source rocks.


2019 ◽  
Vol 498 (1) ◽  
pp. 233-255 ◽  
Author(s):  
Holger Gebhardt ◽  
Samuel O. Akande ◽  
Olabisi A. Adekeye

AbstractThe Benue Trough formed in close relation to the opening of the South Atlantic and experienced sea-level fluctuations of different magnitudes during the Cenomanian to Coniacian interval. We identify depositional environments from outcrop sections and a drilling as control record. Lines of evidence for the interpretation include facies analyses, foraminiferal assemblage composition (P/B-ratio) and the presence of planktonic deep-water indicators. While the analysis of the well data from the Dahomey Basin indicates a continuous deep-water (bathyal) environment, the succession in the Nkalagu area of the Lower Benue Trough evolved in a different and more complex way. Beginning with latest Cenomanian shoreface to shelf deposits, a long period of subsidence lasted until the middle Turonian when pelagic shales and calcareous turbidites were deposited at upper to middle bathyal depths. These conditions continued during late Turonian and Coniacian times. The general deepening trend of the Lower Benue Trough was mainly controlled by tectonic subsidence and was superimposed by eustatic sea-level changes, resulting in periodically changing palaeowater depths. We were able to identify eight sea-level rises and falls that can be attributed to 405 kyr eccentricity cycles. The amplitudes of the sea-level changes were most likely in the range of several tens to a few hundred metres. The deposition of carbonate turbidites at Nkalagu was probably triggered by eustatic sea-level lowstands.


Facies ◽  
1990 ◽  
Vol 22 (1) ◽  
pp. 87-101 ◽  
Author(s):  
Michael N. Oti ◽  
Roman Koch

Sign in / Sign up

Export Citation Format

Share Document