In vitro conservation and production of vigorous and desiccate tolerant synthetic seeds in Stevia rebaudiana

2012 ◽  
Vol 6 (7) ◽  
Author(s):  
Aamir Ali
Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
H Lata ◽  
S Chandra ◽  
N Techen ◽  
YH Wang ◽  
MA ElSohly ◽  
...  

2019 ◽  
Vol 29 (1) ◽  
pp. 1
Author(s):  
Riry Prihatini ◽  
Sri Hadiati

<p>Konservasi in vitro tanaman nenas dilakukan untuk penyimpanan materi genetik sebelum dimanfaatkan. Penelitian ini dilaksanakan untuk mengembangkan teknik enkapsulasi yang dapat memperpanjang daya simpan benih sintetik nenas melalui perlakuan konsentrasi natrium alginat, suhu, dan media penyimpanan. Penelitian dilakukan di Laboratorium Kultur Jaringan, Balai Penelitian Tanaman Buah Tropika, mulai Januari hingga Desember 2017. Bahan yang digunakan adalah plantlet nenas aksesi 5X18(10). Penelitian dibagi menjadi dua subkegiatan. Metode yang digunakan pada subkegiatan pertama yaitu tunas mikro nenas dienkapulasi dengan metode tetes menggunakan natrium alginat 3% dan 4% serta penyimpanan dalam akuades steril dan tanpa media selama 30, 60, 120, dan 240 hari pada suhu 25oC. Penggunaan 4% natrium alginat dan media akuades steril dapat memperpanjang masa simpan benih sintetik nenas hingga 240 hari dengan daya regenerasi benih 100%. Pada subkegiatan kedua, perlakuan terbaik pada subkegiatan pertama dilanjutkan dengan perlakuan suhu penyimpanan 4oC. Benih sintetik nenas pada suhu penyimpanan tersebut hanya mampu bertahan hingga 60 hari, selebihnya tunas dalam benih menghitam dan tidak dapat ditumbuhkan kembali. Metode enkapsulasi untuk penyimpanan materi genetik yang dikembangkan dalam penelitian ini lebih sederhana dan efisien serta dapat diaplikasikan pada kegiatan konservasi in vitro jangka menengah tanaman nenas.</p><p><strong>Keywords</strong></p><p>Enkapsulasi; Konservasi; In vitro;  Tanaman nenas</p><p><strong>Abstract</strong></p><p>In vitro conservation of pineapple was conducted as preservation of genetic material before it was further utilized. This research was conducted to obtain encapsulation technique which expanded synthetic seeds shelf life by modifying concentration of sodium alginate, incubation media, and temperature. The research was conducted on Tissue Culture Laboratory of Indonesian Tropical Fruit Research Institute on January to December 2017. The materials which were used included pineapple micro shoots accessions 5X18(10). The research was divided into subactivities. The method which was applied on the first subactivity included encapsulation of pineapple micro shoots using drop method with sodium alginate 3% and 4%,incubation media sterile aquades and without media for 30, 60, 120, and 240 days on 25oC temperature.The use of 4% sodium alginate and sterile aquades incubation media prolonged the pineapple shelf life up to 240 days with 100% regeneration capability. On the second subactivity, the best treatment on the first activity was combined with 4oC incubation temperature. The pineapple synthetic seeds on this incubation temperature only survive up to 60 days, became blackening, and could not be regrowth. Encapsulation method which was developed on this study was simpler, more efficient, and able to be applied for medium term pineapple in vitro conservation.</p>


2017 ◽  
pp. 37-44 ◽  
Author(s):  
F. Gomes ◽  
M. Clemente ◽  
P. Figueiredo ◽  
F. Plácito ◽  
H. Machado ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Clara Azzam ◽  
Sudad Al-Taweel ◽  
Ranya Abdel-Aziz ◽  
Karim Rabea ◽  
Alaa Abou-Sreea ◽  
...  

Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL−1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets−1, number of root plantlets−1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme’s fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


Sign in / Sign up

Export Citation Format

Share Document