scholarly journals Melting heat transfer of hyperbolic tangent fluid over a stretching sheet with fluid particle suspension and thermal radiation

2017 ◽  
Vol 2017 ◽  
pp. 125-140 ◽  
Author(s):  
K. Ganesh Kumar ◽  
B. J. Gireesha ◽  
N. G. Rudraswamy ◽  
R. S. R. Gorla
2017 ◽  
Vol 6 (3) ◽  
Author(s):  
B.C. Prasannakumara ◽  
N.S. Shashikumar ◽  
P. Venkatesh

AbstractAn analysis has been carried out to study the effect of nonlinear thermal radiation on slip flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet immersed in a porous medium. Water is considered as a base fluid with dust particles along with suspended Aluminum Oxide (Al


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
M.R. Krishnamurthy ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

AbstractA theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.


2019 ◽  
Vol 8 (1) ◽  
pp. 734-743 ◽  
Author(s):  
H.B. Mallikarjuna ◽  
M.C. Jayaprakash ◽  
Raghavendra Mishra

Abstract This article presents the effect of nonlinear thermal radiation on three dimensional flow and heat transfer of fluid particle suspension over a stretching sheet. The combined effects of non-uniform source/sink and convective boundary condition are taken into consideration. The governing partial differential equations are transformed into ordinary differential equations using similarity variables, which are then solved numerically by using Runge Kutta Fehlberg-45 method with shooting technique. The influence of various parameters on velocity and temperature profiles are illustrated graphically, and discussed in detail. The results indicate that the fluid phase velocity is greater than that of the particle phase for various existing parameters.


Sign in / Sign up

Export Citation Format

Share Document