scholarly journals A study on corrosion of distance piece on Exhaust Gas Cleaning Systems (EGCS) discharge water line

2020 ◽  
Vol 44 (6) ◽  
pp. 453-456
Author(s):  
Inyoung Park ◽  
Jungpil Noh ◽  
Yongsup Yun ◽  
Jeonghyeon Yang
Author(s):  
Jun Sawada ◽  
Yoshihiko Matsui ◽  
Karol Hensel ◽  
Ippei Koyamoto ◽  
Kazunori Takashima ◽  
...  

2018 ◽  
Vol 932 ◽  
pp. 124-128
Author(s):  
Wei Feng Liu ◽  
Xue Wei Li ◽  
Wen Bo Dong ◽  
Le Bo ◽  
Yi Min Zhu ◽  
...  

Poly-γ-glutamic acid (γ-PGA) produced by Bacillus pumilus C2 was employed to remove heavy metals from sewage of magnesium - based exhaust gas cleaning system (Mg-EGCS). The components of heavy metals in the sewage were detailed analyzed. On the base of the analytical results, the effects of addition amount of γ-PGA, adsorption time, temperature and NaCl concentration on the removal efficiency of typical heavy metals were further investigated. The optimal removal rates of heavy metals were obtained at the γ-PGA dosage of 9 g/L and adsorption duration of 30 min. The γ-PGA had excellent tolerance for high temperatures up to 80°C and exhibited steady heavy metal removal efficiency in NaCl concentrations of 0 – 24%. Under the optimal conditions, the removal rates of Zn, Cr, V, Cd, Pb and Ni by γ-PGA in a real sewage of Mg-EGCS achieved 53.6%, 100%, 49.2%, 72.7%, 33.7% and 39.9% respectively.


2015 ◽  
Vol 50 (3) ◽  
pp. 324-331
Author(s):  
Takashi Inui ◽  
Masaya Tabaru ◽  
Yukio Aoki ◽  
Akinori Zukeran

2018 ◽  
Vol 7 (4.36) ◽  
pp. 920
Author(s):  
Byshov N.V ◽  
Bachurin A.N ◽  
Bogdanchikov I.Yu ◽  
Oleynik D.O ◽  
Yakunin Yu.V. ◽  
...  

The aim of the article is to develop a method and a device for reducing the toxicity of exhaust gases of diesel engines and reducing noise taking into account the current mode of operation of the engine. This is done with the help of installing a liquid catalyst (LC) into the exhaust system, ensuring the processes of trapping, chemical bonding and neutralization of toxic components and soot particles in the aerosol chamber while the vortex flow is being processed by a neutralizing solution supplied under pressure. Then the flow is divided into phases and toxic components and soot are separated in the centrifugal swirl drop separator (SDS).The developed and tested design of an exhaust gas cleaning device installed instead of the standard D-120 engine exhaust system and an automated cleaning process control system make it possible to reduce the toxicity of exhaust gases (EG): nitrogen oxides by 40 %, hydrocarbons by 43 % and soot by 70 %. The noise level of its work in enclosed spaces was reduced by 16–22 %. The device also had low gas-dynamic resistance.The investigation methodology is based on the use of modern methods and measuring devices. Exhaust gas tester META “Autotest CO – CH – CO2 – O2 – λ – NOx” was used to measure the toxicity of exhaust gases. To measure smoking at the exhaust of the diesel engine, the opacity meter META-01MP was used. The gas flow velocity was measured with ATT-1004 thermo-anemometer, the noise level of the tractor was recorded with noise and vibration meter VSHV–003–M2, and the fuel consumption with SIRT-1 meter.Theoretical studies were carried out on the basis of the laws of gas dynamics, the modern theory of statistical analysis, and experiment planning techniques. When developing an experimental LC model, dependencies were obtained, which allow to achieve the optimal design and technological parameters of the wet cleaning system for diesel exhaust gases.The optimization of the design parameters and the processing of experimental data were carried out with the help of modern software using the methods of mathematical statistics using computers.The current methods of reducing the toxicity of engines consist primarily in improving the design of engines, in order to influence the nature of the working process, the use of alternative fuels and additives, exhaust gas recirculation, as well as installing various types of exhaust gas catalytic systems. Measures related to the introduction of constructive changes in engines require some major restructuring of the industry, which is difficult to achieve in modern conditions. Alternative fuels have not yet been widely used in agriculture. Therefore, today the most effective and acceptable means of achieving environmental standards is the installation of various mobile catalysts in the exhaust system, as well as devices for trapping soot particles. The use of this exhaust gas cleaning system for diesel engines functioning in enclosed spaces can significantly improve the working conditions of the personnel and have a slight effect on the power and fuel-economic performance of the power unit, reducing the power of the D-120 engine of the T-30 tractor equipped with an upgraded exhaust system when taking external speed characteristics averaged 1.6 %, the torque was 1.5 % and the increase in specific fuel consumption was 1.8 %.In this paper we used materials from scientific publications indexed by bibliographic abstract databases of Scopus and Web of Science.   


2017 ◽  
Vol 228 (2) ◽  
Author(s):  
Tie Li ◽  
Lin Sha ◽  
Quan Liu ◽  
Jiao Zhao ◽  
Xiaojia Tang ◽  
...  

2019 ◽  
Vol 26 (4) ◽  
pp. 97-104
Author(s):  
Mirosław Karczewski ◽  
Leszek Szczęch ◽  
Filip Polak ◽  
Szymon Brodowski

AbstractElectric vehicles are increasingly present on the roads of the whole world. They have the opinion of ecological vehicles, not polluting the environment. Society is more and more often persuaded to buy electric cars as an environmentally friendly solution but is this for sure? Electric cars need quite a lot of electricity accumulated in batteries to drive on a long range. During the charging process, this energy is obtained from the electricity network, to where it is supplied by power plant. Electricity production from renewable sources is a privilege for the rare. However, electric cars are charged from the electricity grid, which in large part energy comes from non-renewable fuels. The efficiency of energy production in power plants and the energy transmission and conversion chain causes that only part of the energy produced in this way goes to the vehicle’s wheels. Although the power plants are equipped with more and more efficient exhaust gas cleaning systems, they do not clean them up to 100%. Sulphur, nitrogen, mercury and heavy metals remain in the exhaust. The article is an attempt to answer the question whether the total emission of toxic components associated with the use of an electric vehicle is not bigger than in a traditional internal combustion engine.


Sign in / Sign up

Export Citation Format

Share Document