scholarly journals Analysis of Electric Vehicles Efficiency and their Influence on Environmental Pollution

2019 ◽  
Vol 26 (4) ◽  
pp. 97-104
Author(s):  
Mirosław Karczewski ◽  
Leszek Szczęch ◽  
Filip Polak ◽  
Szymon Brodowski

AbstractElectric vehicles are increasingly present on the roads of the whole world. They have the opinion of ecological vehicles, not polluting the environment. Society is more and more often persuaded to buy electric cars as an environmentally friendly solution but is this for sure? Electric cars need quite a lot of electricity accumulated in batteries to drive on a long range. During the charging process, this energy is obtained from the electricity network, to where it is supplied by power plant. Electricity production from renewable sources is a privilege for the rare. However, electric cars are charged from the electricity grid, which in large part energy comes from non-renewable fuels. The efficiency of energy production in power plants and the energy transmission and conversion chain causes that only part of the energy produced in this way goes to the vehicle’s wheels. Although the power plants are equipped with more and more efficient exhaust gas cleaning systems, they do not clean them up to 100%. Sulphur, nitrogen, mercury and heavy metals remain in the exhaust. The article is an attempt to answer the question whether the total emission of toxic components associated with the use of an electric vehicle is not bigger than in a traditional internal combustion engine.

Author(s):  
FANNOU Jean-Louis Comlan ◽  
SEMASSOU Guy Clarence ◽  
DANGNON Emmanuel ◽  
ADJALLA Dieudonné K ◽  
GEGAN Gérard

In order to make up its energy deficit and reduce its energy imports from neighbouring countries, Benin is opting for the construction of photovoltaic solar micro-power plants in the sunniest regions and to consider injecting it into the existing electricity grid if this locally produced energy is not entirely consumed. With this in mind, a decentralised electricity production project has been initiated. In particular, the project, which is the subject of this presentation, aims to simulate and analyse the impacts of injecting 25 MW of photovoltaic energy production into the existing national electricity grid of the Société Béninoise d'Energie Electrique (SBEE). For this purpose, the dimensioning of the 25MW power plant has been carried out and injected at a specific point of the 20kVA line of the existing electricity network in the NEPLAN software environment, while respecting the requirements for injecting photovoltaic energy into an existing electricity network. Only extreme operating configurations have been studied: the synchronous hollow and synchronous point configuration. Simulation results showed overloads on certain transformer stations in the network, which indicates that adjustments must be made before the actual injection of the electricity produced. Besides, the power grid did not experience any disturbance in the voltage plan and power flows. Finally, the simulations carried out led to the conclusion that the integration of solar PV plants will make it possible to limit the import of energy from Ghana and Nigeria.


2019 ◽  
pp. 15-19
Author(s):  
Виктория Сергеевна Корниенко ◽  
Роман Николаевич Радченко

Obtaining additional energy due to the deep utilization of the internal combustion engine (ICE) heat losses al-lows saving fuel used for the operation of the ship's power plant. This accordingly leads to a reduction of the emissions of harmful substances into the atmosphere, contributes to meet the more stringent standards of the International Maritime Organization (IMO) governing the limits of these emissions. The study aims to develop the system of complex exhaust gas cleaning for an internal combustion engine (ICE). For solving the tasks in the technology of proposed method there were 6 stages of technological process envisaged. Based on experimental and theoretical studies, a setup for complex exhaust gas cleaning using a cyclone and the effect of "microexplosions" of a water-fuel emulsion (WFE) droplet was developed. It has been established that as a result of activated WFE combustion we obtain at the engine outlet exhaust gases of a corresponding composition with a reduced amount of toxic ingredients down to 35 % and below and most importantly – an equimolar ratio of NO2 /NO to NOx. Experimental studies have shown that in the condensate acid under these conditions, an average concentration of about 57 % is established, which ensures a sharp increase in the absorption of SO2 and NOx. The presence of an equimolar (or almost this) NO2 /NO ratio in gases ensures the passivation of the condensation surface in exhaust gas boiler (EGB) from carbon steel. This ensures a sharp decrease in the low-temperature corrosion intensity, an increase in the operating reliability of condensation surfaces and the possibility of a sharp increase in the engine exhaust gas utilization depth to 80...90 °C instead of 160 °C. For the final gas cleaning, it was proposed to install a venturi scrubber and a cyclone-absorber on the gas path of ICE. Based on experimental studies, it has been established that the installation of a condensation heating surface in the EGB reduces the NOx content in gases by 55 %, SO2 - by 50 %, and the content of solid particles - by 3 times. The developed complex system can be used to clean the ICE gases to the level recommended by IMO.


2019 ◽  
Vol 55 (1) ◽  
pp. 28-33
Author(s):  
V. S. Kornienko

The necessity to fulfill all requirements of international organizations in the field of environmental protection, need to reduce heat loss in combustion of organic fuels, increasing economy and reliability of all elements of ship's power plant make it necessary to develop complex technology. The aim of study is to develop system for complex exhaust gas cleaning of internal combustion engine (ICE). For performing tasks in technology of proposed method, providing solutions to problems of improving economic efficiency, improvement of environmental indicators and reliability, it is envisaged 5 stages of technological process. At all stages conditions for appropriate running of physico-chemical processes in the next stage are created. Possibility of solving complex problems in proposed technology is ensured by combustion of water-fuel emulsion (WFE) with specifically recommended value of water content W r = 30%. When WFE is burnt with a water content of 30%, the low-temperature corrosion intensity decreases, which allows to install a condensing heating surfaces in exhaust gas boilers. At these conditions an equimolar ratio of nitrogen oxides NO2:NO in gases is required, which is necessary to activate their absorption properties. When WFE is burnt with water content W r = 30% the metal surface with a temperature below of dew point H2SO4 passivates. Experimental studies performed show that: 1 m2 of condensing surface absorbs 3.4 mg/m3 of NOx and 0.89 mg/m3 of SO2, which makes it possible to decrease the NOx concentration by 1.55 times and SO2 - in 1.5 times. There is a process of precipitation of toxic solid ash and soot particles: from 150...170 mg/m3 (at outlet of ICE when WFE is burnt with W r = 30%) to 70...90 mg/m3 after the condensing surface. Consumption of water with alkaline properties decreases when NOx, SO2, CO2 concentration is reduced in front of scrubbers. Reducing pollution of heating surfaces increases the cleaning period of EGB in 2.5 times. The using of complex system provides efficient exhaust gas cleaning at the level recommended by IMO.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012011
Author(s):  
V.K Bupesh Raja ◽  
Ignatius Raja ◽  
Rahul Kavvampally

Abstract The Automotive Industry has undergone a huge revolution – Electric Vehicles! Electric cars are growing fast and the demand for them is increasing all around the world, thanks to the more and improved choice, reduced prices, and enhancing battery technology. Introduced more than 100 years ago, electric vehicles have gone through a tremendous amount of advancement. This paper reviews the current major challenges faced by the Electric Vehicle Industry along with possible solutions to overcome them. Although electric vehicles have come a long way, the battery used in the vehicles needs to be further explored to harness maximum energy with a compact design. Electric vehicles should soon be able to compete with combustion engine vehicles in every aspect. Also, this paper reviews alternative materials for electrodes and batteries to make charging faster and reliable than ever. This paper envisages few concepts that could revolutionize Automobile Industry further in the future.


Author(s):  
Jun Sawada ◽  
Yoshihiko Matsui ◽  
Karol Hensel ◽  
Ippei Koyamoto ◽  
Kazunori Takashima ◽  
...  

2018 ◽  
Vol 932 ◽  
pp. 124-128
Author(s):  
Wei Feng Liu ◽  
Xue Wei Li ◽  
Wen Bo Dong ◽  
Le Bo ◽  
Yi Min Zhu ◽  
...  

Poly-γ-glutamic acid (γ-PGA) produced by Bacillus pumilus C2 was employed to remove heavy metals from sewage of magnesium - based exhaust gas cleaning system (Mg-EGCS). The components of heavy metals in the sewage were detailed analyzed. On the base of the analytical results, the effects of addition amount of γ-PGA, adsorption time, temperature and NaCl concentration on the removal efficiency of typical heavy metals were further investigated. The optimal removal rates of heavy metals were obtained at the γ-PGA dosage of 9 g/L and adsorption duration of 30 min. The γ-PGA had excellent tolerance for high temperatures up to 80°C and exhibited steady heavy metal removal efficiency in NaCl concentrations of 0 – 24%. Under the optimal conditions, the removal rates of Zn, Cr, V, Cd, Pb and Ni by γ-PGA in a real sewage of Mg-EGCS achieved 53.6%, 100%, 49.2%, 72.7%, 33.7% and 39.9% respectively.


2015 ◽  
Vol 50 (3) ◽  
pp. 324-331
Author(s):  
Takashi Inui ◽  
Masaya Tabaru ◽  
Yukio Aoki ◽  
Akinori Zukeran

2018 ◽  
Vol 7 (4.36) ◽  
pp. 920
Author(s):  
Byshov N.V ◽  
Bachurin A.N ◽  
Bogdanchikov I.Yu ◽  
Oleynik D.O ◽  
Yakunin Yu.V. ◽  
...  

The aim of the article is to develop a method and a device for reducing the toxicity of exhaust gases of diesel engines and reducing noise taking into account the current mode of operation of the engine. This is done with the help of installing a liquid catalyst (LC) into the exhaust system, ensuring the processes of trapping, chemical bonding and neutralization of toxic components and soot particles in the aerosol chamber while the vortex flow is being processed by a neutralizing solution supplied under pressure. Then the flow is divided into phases and toxic components and soot are separated in the centrifugal swirl drop separator (SDS).The developed and tested design of an exhaust gas cleaning device installed instead of the standard D-120 engine exhaust system and an automated cleaning process control system make it possible to reduce the toxicity of exhaust gases (EG): nitrogen oxides by 40 %, hydrocarbons by 43 % and soot by 70 %. The noise level of its work in enclosed spaces was reduced by 16–22 %. The device also had low gas-dynamic resistance.The investigation methodology is based on the use of modern methods and measuring devices. Exhaust gas tester META “Autotest CO – CH – CO2 – O2 – λ – NOx” was used to measure the toxicity of exhaust gases. To measure smoking at the exhaust of the diesel engine, the opacity meter META-01MP was used. The gas flow velocity was measured with ATT-1004 thermo-anemometer, the noise level of the tractor was recorded with noise and vibration meter VSHV–003–M2, and the fuel consumption with SIRT-1 meter.Theoretical studies were carried out on the basis of the laws of gas dynamics, the modern theory of statistical analysis, and experiment planning techniques. When developing an experimental LC model, dependencies were obtained, which allow to achieve the optimal design and technological parameters of the wet cleaning system for diesel exhaust gases.The optimization of the design parameters and the processing of experimental data were carried out with the help of modern software using the methods of mathematical statistics using computers.The current methods of reducing the toxicity of engines consist primarily in improving the design of engines, in order to influence the nature of the working process, the use of alternative fuels and additives, exhaust gas recirculation, as well as installing various types of exhaust gas catalytic systems. Measures related to the introduction of constructive changes in engines require some major restructuring of the industry, which is difficult to achieve in modern conditions. Alternative fuels have not yet been widely used in agriculture. Therefore, today the most effective and acceptable means of achieving environmental standards is the installation of various mobile catalysts in the exhaust system, as well as devices for trapping soot particles. The use of this exhaust gas cleaning system for diesel engines functioning in enclosed spaces can significantly improve the working conditions of the personnel and have a slight effect on the power and fuel-economic performance of the power unit, reducing the power of the D-120 engine of the T-30 tractor equipped with an upgraded exhaust system when taking external speed characteristics averaged 1.6 %, the torque was 1.5 % and the increase in specific fuel consumption was 1.8 %.In this paper we used materials from scientific publications indexed by bibliographic abstract databases of Scopus and Web of Science.   


Author(s):  
Yiqing Yuan ◽  
Guoqiang Wu ◽  
Xiangyan He ◽  
Yanda Song ◽  
Xuewen Zhang

Despite great progress recently made on applications of in-wheel motors in electric vehicles, almost all production or near-production electric vehicles still utilize mechanical speed reduction systems for transferring torque from the traction motor to wheels for the purposes of torque augmentation and speed reduction. These systems in general fall into three categories, i.e. fixed ratio, stepped variable ratio, or continuously variable ratio. In China, most electric cars retrofitted from internal combustion engine propelled vehicle models use gear reduction systems of a fixed speed ratio, in order to minimize the time to market. Typically a conversion is made to the original 5-speed manual transmission by taking out a few unused gear sets. With the rapid growth in electric vehicle industry, some gearboxes of fixed speed have been engineered and they typically have a layshaft configuration. Most of them still do not come with a “park” gear due to a lack of understanding on customer’s needs. As an exception, a transmission of fixed speed ratio dedicated for electric vehicle applications has been developed at the Electric Vehicle R&D Center, Chinese Academy of Sciences (UCAS). Among electric vehicles announced by domestic vehicle manufacturers in China, some employ 5-speed manual transmissions (MTs) or automatic transmission (ATs) that typically found in traditional vehicles. From the driving convenience, transmission efficiency, or cost standpoints, these transmissions are, in general, not appropriate for applications in electric vehicles. The “misusage” of these transmissions has often something to do with their availability rather than suitability. A great deal of effort has been put into the research and development of automated mechanical transmissions (AMTs) in China to date. Significant progress has been made to the reduction of shift time, improvement of shift quality, and optimization of the mechanical components. Continuously variable transmission (CVT) is considered to be an important trend in drivetrain technology. However, the pulley-belt types of CVT commonly seen in traditional vehicles are not proper for electric vehicle applications. An EVT dedicated for electric vehicles is under development at UCAS, in which the power from an electric motor of dual-rotors is coupled by means of a planetary gear set, allowing continuous variable of the output speed. In summary, the electric vehicle drivetrain technology in China is undergoing rapid advances, which will impact the development of electric vehicle industry at home and abroad.


Sign in / Sign up

Export Citation Format

Share Document