The Number Line And Mental Arithmetic

1990 ◽  
Vol 38 (4) ◽  
pp. 44-46
Author(s):  
Theodore E. Kurland

Some students have easily recognized difficulties with addition and subtraction. Some have no trouble adding or subtracting single-digit numbers when the sums are less than ten (7 + 2, 5 + 4, etc.) but have to resort to their fingers for sums greater than ten (7 + 5, 8 + 6, etc.). Other students have no difficulty adding numbers whose sums are greater than ten, such as 7 + 5, but have difficulty determining their differences, like 12 − 7. Finally, some students have no difficulty adding 7 + 5 or 8 + 4 but cannot mentall y add 17 + 5 or 18 + 4 or recognize the connection between the sum of singledigit numbers and numbers inc reased by orders of ten. Any one or a combination of these difficulties may appear when students compute; moreover, these problems will continue to plague them, curtailing their confidence and development in mathematics and mental arithmetic.

2020 ◽  
Vol 73 (7) ◽  
pp. 1115-1132 ◽  
Author(s):  
Maria Glaser ◽  
André Knops

Recent research suggests that addition and subtraction induce horizontal shifts of attention. Previous studies used single-digit (1d) problems or verification paradigms that lend themselves to alternative solution strategies beyond mental arithmetic. To measure spatial attention during the active production of solutions to complex two-digit arithmetic problems (2d) without manual motor involvement, we used a temporal order judgement (TOJ) paradigm in which two lateralised targets were sequentially presented on screen with a varying stimulus onset asynchrony (SOA). Participants verbally indicated which target appeared first. By varying the delay between the arithmetic problem presentation and the TOJ task, we investigated how arithmetically induced attention shifts develop over time (Experiment 1, n = 31 and Experiment 2, n = 58). In Experiment 2, we additionally varied the carry property of the arithmetic task to examine how task difficulty modulates the effects. In the arithmetic task, participants were first presented with the arithmetic problem via headphones and performed the TOJ task after the delay before responding to the arithmetic task. To account for spontaneous attentional biases, a baseline TOJ was run without arithmetic processing. Both experiments revealed that addition induces shifts of spatial attention to the right suggesting that visuospatial attention mechanisms are recruited during complex arithmetic. We observed no difference in spatial attention between the carry and noncarry condition (Experiment 2). No shifts were observed for subtraction problems. No common and conclusive influence of delay was observed across experiments. Qualitative differences between addition and subtraction and the role of task difficulty are discussed.


2020 ◽  
pp. 174702182095659
Author(s):  
Mia Šetić Beg ◽  
Dragan Glavaš ◽  
Dražen Domijan

The extent to which processing of abstract numerical concepts depends on perceptual representations is still an open question. In four experiments, we examined the association between contrast polarity and mental arithmetic, as well as its possible source. Undergraduate psychology students verified the correctness of single-digit arithmetic problems such as 2 + 5 = 7 or 9 − 6 = 5. Problems appeared either in white or black on a grey background, thus creating positive or negative contrast polarity, respectively. When the correct response was Yes (No), participants were faster (slower) in verifying positive than negative addition problems and in verifying negative than positive subtraction problems. Experiment 2 confirmed that the same result also held for written word problems (e.g., SEVEN + SIX = THIRTEEN). However, Experiment 3 found that the effect of contrast polarity observed in Experiments 1 and 2 disappeared in a blocked design where arithmetic operation was a between-participant factor. In addition, Experiment 4 revealed that the effect of contrast polarity does not generalise to multiplication and division. Overall, available evidence suggests that participants spontaneously associate the abstract relation between addition and subtraction (more-less) with a similar relation between contrast polarities (bright-dark).


2021 ◽  
Vol 7 (3) ◽  
pp. 248-258 ◽  
Author(s):  
Jamie I. D. Campbell ◽  
Yalin Chen ◽  
Maham Azhar

We conducted two conceptual replications of Experiment 1 in Mathieu, Gourjon, Couderc, Thevenot, and Prado (2016, https://doi.org/10.1016/j.cognition.2015.10.002). They tested a sample of 34 French adults on mixed-operation blocks of single-digit addition (4 + 3) and subtraction (4 – 3) with the three problem elements (O1, +/-, O2) presented sequentially. Addition was 34 ms faster if O2 appeared 300 ms after the operation sign and displaced 5° to the right of central fixation, whereas subtraction was 19 ms faster when O2 was displaced to the left. Replication Experiment 1 (n = 74 recruited at the University of Saskatchewan) used the same non-zero addition and subtraction problems and trial event sequence as Mathieu et al., but participants completed blocks of pure addition and pure subtraction followed by the mixed-operation condition used by Mathieu et al. Addition RT showed a 32 ms advantage with O2 shifted rightward relative to leftward but only in mixed-operation blocks. There was no effect of O2 position on subtraction RT. Experiment 2 (n = 74) was the same except mixed-operation blocks occurred before the pure-operation blocks. There was an overall 13 ms advantage with O2 shifted right relative to leftward but no interaction with operation or with mixture (i.e., pure vs mixed operations). Nonetheless, the rightward RT advantage was statistically significant for both addition and subtraction only in mixed-operation blocks. Taken together with the robust effects of mixture in Experiment 1, the results suggest that O2 position effects in this paradigm might reflect task specific demands associated with mixed operations.


2018 ◽  
Vol 71 (4) ◽  
pp. 1009-1019 ◽  
Author(s):  
Nicolas Masson ◽  
Clément Letesson ◽  
Mauro Pesenti

Processing numbers induces shifts of spatial attention in probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. This has been interpreted as supporting the concept of a mental number line with number magnitudes ranging from left to right, from small to large numbers. Recently, the investigation of this spatial-numerical link has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems might induce attentional displacements, rightward or leftward, respectively. At the neurofunctional level, the activations elicited by the solving of additions have been shown to resemble those induced by rightward eye movements. However, the possible behavioural counterpart of these activations has not yet been observed. Here, we investigated overt attentional shifts with a target detection task primed by addition and subtraction problems (2-digit ± 1-digit operands) in participants whose gaze orientation was recorded during the presentation of the problems and while calculating. No evidence of early overt attentional shifts was observed while participants were hearing the first operand, the operator or the second operand, but they shifted their gaze towards the right during the solving step of addition problems. These results show that gaze shifts related to arithmetic problem solving are elicited during the solving procedure and suggest that their functional role is to access, from the first operand, the representation of the result.


Perception ◽  
2017 ◽  
Vol 47 (2) ◽  
pp. 143-157 ◽  
Author(s):  
Rongjuan Zhu ◽  
Yangmei Luo ◽  
Xuqun You ◽  
Ziyu Wang

The associations between number and space have been intensively investigated. Recent studies indicated that this association could extend to more complex tasks, such as mental arithmetic. However, the mechanism of arithmetic-space associations in mental arithmetic was still a topic of debate. Thus, in the current study, we adopted an eye-tracking technology to investigate whether spatial bias induced by mental arithmetic was related with spatial attention shifts on the mental number line or with semantic link between the operator and space. In Experiment 1, participants moved their eyes to the corresponding response area according to the cues after solving addition and subtraction problems. The results showed that the participants moved their eyes faster to the leftward space after solving subtraction problems and faster to the right after solving addition problems. However, there was no spatial bias observed when the second operand was zero in the same time window, which indicated that the emergence of spatial bias may be associated with spatial attention shifts on the mental number line. In Experiment 2, participants responded to the operator (operation plus and operation minus) with their eyes. The results showed that mere presentation of operator did not cause spatial bias. Therefore, the arithmetic–space associations might be related with the movement along the mental number line.


1998 ◽  
Vol 29 (4) ◽  
pp. 443-464 ◽  
Author(s):  
Anton S. Klein ◽  
Meindert Beishuizen ◽  
Adri Treffers

In this study we compare 2 experimental programs for teaching mental addition and subtraction in the Dutch 2nd grade (N = 275). The goal of both programs is greater flexibility in mental arithmetic through use of the empty number line as a new mental model. The programs differ in instructional design to enable comparison of 2 contrasting instructional concepts. The Realistic Program Design (RPD) stimulates flexible use of solution procedures from the beginning by using realistic context problems. The Gradual Program Design (GPD) has as its purpose a gradual increase of knowledge through initial emphasis on procedural computation followed by flexible problem solving. We found that whereas RPD pupils showed a more varied use of solution procedures than the GPD pupils, this variation did not influence the procedural competence of the pupils. The empty number line appears to be a very powerful model for the learning of addition and subtraction up to 100.


Open Mind ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Pedro Pinheiro-Chagas ◽  
Dror Dotan ◽  
Manuela Piazza ◽  
Stanislas Dehaene

We introduce a novel method capable of dissecting the succession of processing stages underlying mental arithmetic, thus revealing how two numbers are transformed into a third. We asked adults to point to the result of single-digit additions and subtractions on a number line, while their finger trajectory was constantly monitored. We found that the two operands are processed serially: the finger first points toward the larger operand, then slowly veers toward the correct result. This slow deviation unfolds proportionally to the size of the smaller operand, in both additions and subtractions. We also observed a transient operator effect: a plus sign attracted the finger to the right and a minus sign to the left and a transient activation of the absolute value of the subtrahend. These findings support a model whereby addition and subtraction are computed by a stepwise displacement on the mental number line, starting with the larger number and incrementally adding or subtracting the smaller number.


2012 ◽  
Vol 43 (4) ◽  
pp. 428-464 ◽  
Author(s):  
Michelle Stephan ◽  
Didem Akyuz

This article presents the results of a 7th-grade classroom teaching experiment that supported students' understanding of integer addition and subtraction. The experiment was conducted to test and revise a hypothetical learning trajectory so as to propose a potential instructional theory for integer addition and subtraction. The instructional sequence, which was based on a financial context, was designed using the Realistic Mathematics Education theory. Additionally, an empty, vertical number line (VNL) is posited as a potentially viable model to support students' organizing their addition and subtraction strategies. Particular emphasis is placed on the mathematical practices that were established in this setting. These practices indicate that students can successfully draw on their experiences with assets, debts, and net worths to create meaning for integer addition and subtraction.


2018 ◽  
Author(s):  
Thomas J. Faulkenberry ◽  
Matthias Witte ◽  
Matthias Hartmann

Many recent studies in numerical cognition have moved beyond the use of purely chronometric techniques in favor of methods which track the continuous dynamics of numerical processing. Two examples of such techniques include eye tracking and hand tracking (or computer mouse tracking). To reflect this increased concentration on continuous methods, we have collected a group of 5 articles that utilize these techniques to answer some contemporary questions in numerical cognition. In this editorial, we discuss the two paradigms and provide a brief review of some of the work in numerical cognition that has profited from the use of these techniques. For both methods, we discuss the past research through the frameworks of single digit number processing, multidigit number processing, and mental arithmetic processing. We conclude with a discussion of the papers that have been contributed to this special section and point to some possible future directions for researchers interested in tracking the continuous dynamics of numerical processing.


1968 ◽  
Vol 15 (6) ◽  
pp. 525-528
Author(s):  
Warren H. Hill

One of the pedagogical pitfalls involved in teaching the multiplication of integers is the scarcity of physical models that can be used to illustrate their product. This problem becomes even more acute if a phyiscal model that makes use of a number line is desired. If the students have previously encountered the operations of addition and subtraction of integers using a number line, then the desirability of developing the operation of multiplication in a similar setting is obvious. Many of the more common physical models that can be used to represent the product of positive and negative integers are unsuitable for interpretation on a number line. Partial success is possible in the cases of the product of two positive integers and the product of a positive and a negative integer. But, how does one illustrate that the product of two negative integers is equal to a positive integer?


Sign in / Sign up

Export Citation Format

Share Document