Looking For and Using Structural Reasoning

2019 ◽  
Vol 112 (4) ◽  
pp. 294-301
Author(s):  
Casey Hawthorne ◽  
Bridget K. Druken

Examples of solving equations and inequalities, analyzing quadratic expressions, and reasoning with functions show three ways to engage students in this mathematical practice.

Author(s):  
Michael Ernst

In the foundations of mathematics there has been an ongoing debate about whether categorical foundations can replace set-theoretical foundations. The primary goal of this chapter is to provide a condensed summary of that debate. It addresses the two primary points of contention: technical adequacy and autonomy. Finally, it calls attention to a neglected feature of the debate, the claim that categorical foundations are more natural and readily useable, and how deeper investigation of that claim could prove fruitful for our understanding of mathematical thinking and mathematical practice.


Author(s):  
Lisa Shabel

The state of modern mathematical practice called for a modern philosopher of mathematics to answer two interrelated questions. Given that mathematical ontology includes quantifiable empirical objects, how to explain the paradigmatic features of pure mathematical reasoning: universality, certainty, necessity. And, without giving up the special status of pure mathematical reasoning, how to explain the ability of pure mathematics to come into contact with and describe the empirically accessible natural world. The first question comes to a demand for apriority: a viable philosophical account of early modern mathematics must explain the apriority of mathematical reasoning. The second question comes to a demand for applicability: a viable philosophical account of early modern mathematics must explain the applicability of mathematical reasoning. This article begins by providing a brief account of a relevant aspect of early modern mathematical practice, in order to situate philosophers in their historical and mathematical context.


Synthese ◽  
2021 ◽  
Author(s):  
Jenni Rytilä

AbstractThe core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the characteristic features of mathematics, especially objectivity and applicability. I propose that in general social constructivism shows promise as an ontology of mathematics, because the view can agree with mathematical practice and it offers a way of understanding how mathematical entities can be real without conflicting with a scientific picture of reality. However, I argue that Cole’s specific theory does not provide an adequate social constructivist account of mathematics. His institutional account fails to sufficiently explain the objectivity and applicability of mathematics, because the explanations are weakened and limited by the three-level theoretical model underlying Cole’s account of the construction of mathematical reality and by the use of the Searlean institutional framework. The shortcomings of Cole’s theory give reason to suspect that the Searlean framework is not an optimal way to defend the view that mathematical reality is socially constructed.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


Sign in / Sign up

Export Citation Format

Share Document