The Nippon Challenge America's Cup 1992 - Progress in Hull Development

1993 ◽  
Author(s):  
Yoshihiro Nagami

In 1992, the class rule for the America's Cup was changed to the IACC. The Nippon Challenge decided that in order to build a successful challenger to a new class rule, the design would have to rely heavily on the results of a systematic series of tank and wind tunnel testing. The results of these simulations would then be used to build full scale boats which would be tested. The results of the full scale trials would be used to adjust the simulation techniques to fine tune the final design. The data from the model tests were used to develop the input parameters for a Velocity Prediction Program (VPP). The VPP was used to determine the specifications for the design of the first two boats. After full scale testing, the VPP was compared to the results for about 6 months. After this verification and refinement of the VPP, a final boat was built. Finally the results of the race were evaluated and confirm that the basic design development process was correct.

1993 ◽  
Author(s):  
Jerome H. Milgram ◽  
Donald B. Peters ◽  
D. Noah Eckhouse

A sailing dynamometer with a 42% scale model of an International America's Cup Class rig is used to measure sail forces and moments in actual sailing conditions. The sailing dynamometer is a 35-foot boat containing an internal frame connected to the hull by six load cells configured to measure all the forces and moments between the frame and the hull. All sailing rig components are attached to the frame, so that the sail forces are measured. Sail shapes in use are determined by computer-interfaced video. Computational fluid dynamics performed on the measured shapes provides the induced drag. This allows the measured drag to be decomposed into induced and form-and-parasitic components, which is necessary for generating a mathematical sail force model for a velocity prediction program (VPP). It is shown that VPP results using these new sail force coefficients are in better agreement with actual performance than are VPP results based on traditional sail force coefficients.


2007 ◽  
Author(s):  
Heikki Hansen ◽  
Peter J. Richards ◽  
Peter S. Jackson

This paper presents a comparison between wind tunnel and full-scale aerodynamic sail force measurements using enhanced wind tunnel testing techniques to model the full-scale sailing conditions more accurately. The first comparison was conducted by Hansen et al., 2003a, in the Twisted Flow Wind Tunnel (TFWT) at The University of Auckland and followed standard testing procedures. Since then enhancements have been made and two aspects not considered in the original comparison are highlighted here. The interaction of the hull and sail forces is now considered and trim changes of the sails due to wind strength are included. For the enhanced comparison the interaction between the hull/deck and the sails is investigated by installing a secondary force balance inside the model to measure the hull/deck forces and by pressure tapping the hull/deck to determine the surface pressure distribution. It is found that the presence of the sails significantly affects the forces on hull/deck when sailing upwind, which should be accounted for consistently in comparisons of full-scale, wind tunnel, and computational fluid dynamics (CFD) data. In the original comparison the sails were trimmed in the wind tunnel to the aerodynamically optimal shape by maximizing the drive force. Trim variations due to wind strength were however noted in full-scale data so that depowering is considered in the enhanced comparison. The sails in the wind tunnel were trimmed based on the fullscale wind strength and the yacht performance by employing a Real-Time Velocity Prediction Program (VPP) to achieve realistically depowered sail shapes. Utilising the enhanced wind tunnel techniques a generally good qualitative and quantitative agreement with the full-scale data was achieved, but a conclusive judgment of the accuracy of the comparison cannot be made.


1997 ◽  
Author(s):  
Jonathan R. Binns ◽  
Kim Klaka ◽  
Andrew Dovell

The research explained in this paper was carried out to investigate the effects of hull-appendage interaction on the resistance of a sailing yacht, and the effects these changes have on the velocity prediction for a sailing yacht. To accomplish this aim a series of wave-cut experiments was carried out and analysed using a modified procedure. The processed results have then been incorporated into an existing velocity prediction program. For the purposes of this research two variables were investigated for the Australian Maritime Engineering Cooperative Research Centre (AMECRC) parent model 004, a model derived from the Delft IMS series of yachts. Wave-cut procedures inevitably raise questions about scaling procedures for full scale extrapolation as the inviscid wave-pattern resistance is calculated to be less than the residuary or wave resistance. These questions have been dealt with by an approximate method, briefly explained in this paper.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1389-1402 ◽  
Author(s):  
R. Zaloum

Deviations from design expectations appear to stem from views which assume that a unique response should result from a given set of operating conditions. The results of this study showed that two systems operating at equal organic loads or F/M ratios and at the same SRT do not necessarily give equal responses. This deviation was linked to the manner in which the HRT and influent COD are manipulated to obtain a constant or uniform load, and to subtle interactions between influent COD, HRT and SRT on the biomass and effluent responses. Increases of up to 200% in influent COD from one steady level to the next did not significantly influence the effluent VSS concentration while an effect on filtered COD was observed for increases as low as 20%. Effluent TKN and filtered COD correlated strongly with the operating MLVSS while phosphorus residual depended on the operating SRT and the organic load removed. These results point to the inadequacy of traditional models to predict effluent quality and point to the need to consider these effects when developing simulation techniques or computer assisted expert systems for the control of waste treatment plants.


2021 ◽  
Vol 235 ◽  
pp. 112101
Author(s):  
Johnny Estephan ◽  
Changda Feng ◽  
Arindam Gan Chowdhury ◽  
Mauricio Chavez ◽  
Appupillai Baskaran ◽  
...  

1993 ◽  
Vol 30 (1) ◽  
pp. 1-11
Author(s):  
R. Frank ◽  
H. Zervogiannis ◽  
S. Christoulas ◽  
V. Papadopoulos ◽  
N. Kalteziotis

This paper describes the behaviour of two test piles (one bored and postgrouted and one simply bored, both 31.7 m long and 0.75 m in diameter) subjected to horizontal loads. These full-scale pile tests were carried out for the actual design of the pile foundation of a pier of the Evripos cable-stayed bridge. This bridge will link the Euboea Island to mainland Greece. The two piles have already been subjected to bearing capacity tests under axial loadings. The inclinometer measurements, taken during the present tests, yielded, in particular, the deformed shape of the piles as well as the bending moments. Conclusions could be drawn for the final design of the pile foundation with respect to horizontal loadings. Furthermore, various calculation methods using p–y reaction curves for cohesionless soils have been checked: the Ménard pressuremeter method, the method of the American Petroleum Institute recommendations, and the Standard penetration test method of Christoulas. These pile tests show that simple measurements, taken on construction sites, can yield interesting results on the actual behaviour of horizontally loaded piles. Key words : pile, horizontal loading, full-scale test, horizontal loads, bending moment, subgrade reaction modulus, p–y curve, cohesionless soil, Standard penetration test, pressuremeter test.


1987 ◽  
Author(s):  
Kart L. Kirkman

The velocity prediction program, VPP, appeared on the yachting scene about ten years ago and it now dominates design and sailing. Originally implemented as a handicapping tool under the Measurement Handicap System, now accepted internationally as IMS, it has seen widespread acceptance for many other uses, from design to tuning and racing. This capability means that it is productive, even necessary, for the typical sailor interested in good performance to understand how to apply a VPP to his activities. To do so requires an appreciation of how a VPP functions and how it is applied to practical sailing problems, such as sail selection or tactics. The paper presents a review of VPP fundamentals and then treats the following applications: - Sail selection and strategy for offshore yachts. - Tuning and optimization of all boats. It is the goal of the paper to impart a working understand­ing of the VPP to many sailors so that they can take advantage of the technology in their normal activities.


2007 ◽  
Author(s):  
Kai Graf ◽  
Marcus Pelz ◽  
Volker Bertram ◽  
H. Söding

A method for the prediction of seakeeping behaviour of sailing yachts has been developed. It is based on linear strip theory with some non-linear extensions. The method is capable to take into account heeling and yawing yacht hulls, yacht appendages and sails. The yacht's response amplitude operators (RAO) and added resistance in waves can be predicted for harmonic waves as well as for natural wave spectra. The method is used to study added resistance in seaways for ACC-V5 yachts of varying beam. Results are used for further VPP investigations. The AVPP velocity prediction program is used to study optimum length to beam ratio of the yachts depending on wind velocity and upwind to downwind weighting. This investigation is carried out for flat water conditions as well as for two typical wave spectra. The results show that taking into account added resistance in seaways has a strong impact on predicted performance of the yacht.


2003 ◽  
Vol 2003 (194) ◽  
pp. 67-73
Author(s):  
Hiroshi Kobayashi ◽  
Takeshi Kinoshita

Sign in / Sign up

Export Citation Format

Share Document