Development of STEP Ship Model Database and Translators for Data Exchange Between Shipyards

1997 ◽  
Vol 13 (02) ◽  
pp. 111-124
Author(s):  
Jeff Wyman ◽  
Dan Wooley ◽  
Burt Gischner ◽  
Joyce Howell

Effective data exchange of product model data is essential for future competition in the global marketplace. Many efforts have been undertaken in recent years to establish a transfer mechanism for product model data in the Shipbuilding industry. These include the development of the STEP Standard, creation of the NIDDESC Application Protocols, and efforts of the European NEUTRABAS and MARITIME Projects. The ARPA/MARITECH Project for "Development of STEP Ship Product Model Database and Translators for Data Exchange Between Shipyards" provides a unique opportunity to attempt to implement the still developing Standards for Product Model Exchange and to enable their use for data exchange between the major US Shipyards. The project will create and populate a prototype product model database, develop translators for exchange of product model data between Shipyards, and facilitate adoption of the Shipbuilding Application Protocols as part of the emerging International Standard (STEP). These ambitious goals are being undertaken by a consortium of US Shipbuilders, their CAD vendors, and STEP experts. The participants will help develop a product model data exchange capability for the entire Shipbuilding industry, while they enhance their own ability to compete in the global marketplace.

2001 ◽  
Vol 17 (03) ◽  
pp. 151-160
Author(s):  
B. Gischner ◽  
B. Kassel ◽  
P. Lazo ◽  
R. Wood ◽  
J. Wyman

Evolution of STEP (ESTEP) is a task within the MARITECH-ASE Integrated Shipbuilding Environment (ISE) Project building upon the work of the MariSTEP consortium and the NIDDESC standards development efforts. The purpose of ESTEP is to validate product model standards for the shipbuilding industry, implement product model data translators, and to further the development of Shipbuilding Application Protocols. Three of the major goals of ESTEP are developing a production-quality ship structure data exchange capability, expanding shipbuilding piping implementation efforts, and the exchange of parts and part libraries. Piping applications between the plant design industry and the shipbuilding industry are similar, and the AP used for translation of plant piping data (AP227–Plant Spatial Configuration) is much further along in the ISO process than the ISO Shipbuilding Piping AP (AP217). Both application protocols have been analyzed to determine the feasibility of using the plant AP as the ISE piping data exchange model. Shipbuilding structures will be expanding on the MariSTEP implementation that was based on a subset of the detail design data model. This will include the development of a STEP conformance class, a subset of the data model that covers a particular ship life-cycle phase or business case. Parts and part libraries are a joint effort with the ISE Electronic Commerce (EC) task to define an exchange mechanism. The critical need for such a mechanism was identified early in the MariSTEP exchange effort. ESTEP plans to exchange library part definitions, including geometric, parametric, and nongraphic attribute data. The current status, the achievements, and the future implementation plans of the ISE ESTEP are reviewed in this paper.


Author(s):  
Steven A. Ryan

Abstract This status report provides a current overview of the work that is progressing toward the development of an international Standard for the Exchange of Product model data (STEP). STEP has the potential for revolutionizing the exchange of product definition data. The current state of the art in product data exchange requires knowledge of both the sending and receiving system in order to expect a reliable exchange to occur. The basic premise that STEP is built upon is to support the exchange and sharing of product model data without the need to know the sending or receiving system. The first release of STEP as a Draft International Standard will occur in 1992. The capability of that release will provide a strong basis for system designers and integrators to develop STEP compliant products that can support a significant portion of the product definition data that is exchanged today between and within businesses.


1994 ◽  
Vol 10 (01) ◽  
pp. 39-50
Author(s):  
Richard H. Lovdahl ◽  
Douglas J. Martin ◽  
Michael A. Polini ◽  
Ron W. Wood ◽  
Michael L. Gerardi ◽  
...  

This paper presents the purpose, approach, goals and progress of the tasks that make up the standard for a digital Ship Product Model. The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) Standards will be a part of the Standard for the Exchange of Product Model Data (STEP) International Standard. The STEP standard has a layered architecture in which basic core definitions are used by many industry and product specific standards such as the NIDDESC Standards.


1994 ◽  
Vol 10 (01) ◽  
pp. 31-38
Author(s):  
Burton Gischner ◽  
Gregory Morea

The Initial Graphics Exchange Specification (IGES) was first developed in 1980. It has evolved with continual improvements to the current Version 5.1 which was published in October 1991 [1]. Although IGES has proved to be a very valuable tool, difficulties have been encountered in using it for sophisticated transfers, such as for product models or complicated drawings. The long range solution to these difficulties is the emergence of the Standard for the Exchange of Product Model Data (STEP). The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) has been a leading player in the development of this international standard. However, in the interim, NIDDESC is also spearheading the efforts to enhance the use of IGES by developing application protocols. Two of these application protocols, for 3D Piping and Engineering Drawings, are the first ones to be developed by the IGES/ PDES (Product Data Exchange using STEP) Organization (IPO), and will lead the way to more productive data transfer before the development of STEP. They will be referenced by the U.S. Department of Defense (DOD) standard for digital data transfer, MIL-D-28000 [2], and should greatly facilitate the occurrence of effective data transfer in these two disciplines. Furthermore, the use of these IGES application protocols is expected to provide significant guidance in the development of application protocols for the emerging STEP standard. This paper focuses on the development of these two application protocols, the involvement of NIDDESC and the shipbuilding industry (as well as the participation of other industry users and vendors), and the significant benefits to be derived from the adoption of these standards.


2005 ◽  
Vol 21 (03) ◽  
pp. 160-169
Author(s):  
T. Briggs ◽  
B. Gischner ◽  
P. Lazo ◽  
P. Lazo ◽  
A. Royal ◽  
...  

Successful and efficient exchange of product model data has been a major challenge in the shipbuilding industry for the past two decades. The Standard for the Exchange of Product Model Data (STEP) has been developed to enable this capability. Four STEP application protocols (APs) to facilitate the exchange of structural and distributed systems models in shipbuilding were completed in 2003 and were adopted by the International Organization for Standardization (ISO) by mid-2004. In August 2003, ISO 10303–216: Ship Moulded Forms (AP216) became the first shipbuilding STEP AP to be published as an international standard. Participants involved in these efforts represent several major US shipyards, the Navy, and their computer-aided design/ engineering (CAD/CAE) vendors. The thrust of shipbuilding data exchange efforts has now shifted from development to implementation. This paper will report on efforts to develop and use translators for this AP to exchange hull form product data in the ship modeling and simulation arena. In addition, process simulation is becoming common in the design of new ships to validate that the design meets the customer's specifications. Current technology requires that the ship be modeled both in the computer-aided design (CAD) environment and then repeated in the simulation workbench. Not only is this effort inefficient, but it is inherently error prone. Through the National Shipbuilding Research Program (NSRP)-sponsored Integrated Shipbuilding Environment (ISE) projects, we have developed tool sets that use AP227: Plant Spatial Configuration to permit the design to flow smoothly from the CAD workbench to the simulation workbench. This paper summarizes the efforts to develop and use a suite of tools that enables US shipyards to become more productive. It details the specific successes in using AP216 and AP227 for modeling and simulation, as well as efforts to exchange design data electronically between CAD systems. The report also outlines efforts that are underway to use other APs to successfully exchange data describing ship electrical; heating, ventilation, and air-conditioning (HVAC); and controls systems.


2003 ◽  
Vol 19 (01) ◽  
pp. 44-52
Author(s):  
L. Benthall ◽  
T. Briggs ◽  
B. Downie ◽  
B. Gischner ◽  
B. Kassel ◽  
...  

An international standard (ISO 10303) has been created to facilitate the exchange of product models between diverse computer-aided design (CAD) systems. Informally known as STEP (standard for the exchange of product model data), this specification has been under development since the mid 1980s, and parts of it were approved as international standards beginning in 1994. Efforts to expand STEP to meet the needs of the shipbuilding industry have been in work for many years and are nearing completion. By early 2003, it is expected that four application protocols to facilitate the transfer of information relating to ship structures, piping, and heating, ventilation, and air-conditioning will have been approved as international standards and become part of the overall STEP standard. This article discusses the successful efforts to expand STEP to meet the needs of the shipbuilding industry, as well as outlining the various implementation and testing projects that have been undertaken to ensure the validity and success of these new standards.


1994 ◽  
Vol 10 (04) ◽  
pp. 281-296
Author(s):  
James T. Higney ◽  
Joanne J. Ouillette

Draft STEP (Standard for the Exchange of Product Model Data) application protocols, developed by the Navy Industry Digital Data Exchange Standards Committee (NIDDESC), have been issued to define the information content of a product model for a ship. The work reported in this paper combines the existing CAD models of the DDG51 Class design with a newly developed non-graphic database so that the overall information content complies with the STEP protocols. This work represents the first-time implementation of the application protocols and is a significant step in the Navy's plan to do the design of variants of the DDG51 Class totally in computer-aided design (CAD). The combined graphic/non-graphic database is referred to as the DDG51 engineering product model. Emphasis has been placed on populating the non-graphic database with the information necessary to perform all required engineering analyses. The basic schema described in this paper may be extended to support other areas of interest, such as logistics support.


Sign in / Sign up

Export Citation Format

Share Document