Pressure Measurements on Yacht Sails: Development of a New System For Wind Tunnel and Full Scale Testing

2017 ◽  
Vol 2 (01) ◽  
2016 ◽  
Author(s):  
Fabio Fossati ◽  
Ilmas Bayati ◽  
Sara Muggiasca ◽  
Ambra Vandone ◽  
Gabriele Campanardi ◽  
...  

The paper presents an overview of a joint project developed among Politecnico di Milano, CSEM and North Sails, aiming at developing a new sail pressure measurement system based on MEMS sensors (an excellent compromise between size, performance, costs and operational conditions) and pressure strips and pads technology. These devices were designed and produced to give differential measurement between the leeward and windward side of the sails. The project has been developed within the Lecco Innovation Hub Sailing Yacht Lab, a 10 m length sailing dynamometer which intend to be the reference contemporary full scale measurement device in the sailing yacht engineering research field, to enhance the insight of sail steady and unsteady aerodynamics [1]. The pressure system is described in details as well as the data acquisition process and system metrological validation is provided; furthermore, some results obtained during a wind tunnel campaign carried out at Politecnico di Milano Wind Tunnel, as a benchmark of the whole measuring system for future full scale application, are reported and discussed in details. Moreover, the system configuration for full scale testing, which is still under development, is also described.


2015 ◽  
Vol 157 (B2) ◽  
Author(s):  
D Le Pelley ◽  
D Morris ◽  
P Richards ◽  
D Motta

This paper describes a method of deducing aerodynamic force components produced by individual sails. This is achieved by measuring the pressure distribution at a number of discrete locations over the sail and extrapolating these measurements into a distribution across the entire sail surface. The sail shape is measured using the camera-based VSPARS system and the force distribution over the sail surface is then determined. Wind tunnel tests have been conducted to validate the accuracy of the model. Full scale testing has been undertaken to investigate how aerodynamic effects of trimming sails affect yacht performance.


2011 ◽  
Author(s):  
Ignazio Maria Viola ◽  
Richard G. J. Flay

The main results of a two-year project aimed at comparing full-scale tests, wind tunnel tests, and numerical analysis predictions are presented. Pressure measurements were obtained from both full-scale tests and wind-tunnel tests, in upwind and downwind conditions. The upwind wind tunnel test condition was modelled using a Vortex Lattice code, while the downwind wind-tunnel test was modelled using a Navier-Stokes code. The pressures obtained from the three different methods are compared on three horizontal sections of the headsail, mainsail, and asymmetric spinnaker. In general the pressures from the three experiments showed good agreement. In particular, very good agreement was obtained between the numerical computations and the wind tunnel test results. Conversely, the results from the downwind full-scale pressure measurements showed less similarity due to a slightly tightened trim being used for the spinnaker in the on-water tests. Full-scale tests allow the action of unsteadiness due to the wind, wave and yacht movements to affect the results. This unstable environment caused the asymmetric spinnaker to move around, and a tightened trim was required to prevent the spinnaker from collapsing.


2002 ◽  
Vol 90 (12-15) ◽  
pp. 1817-1829 ◽  
Author(s):  
Morimasa Watakabe ◽  
Masamiki Ohashi ◽  
Hisashi Okada ◽  
Yasuo Okuda ◽  
Hitomi Kikitsu ◽  
...  

1996 ◽  
Vol 33 (6) ◽  
pp. 1148-1156 ◽  
Author(s):  
Chris L. Pettit ◽  
Dansen L. Brown ◽  
Michael P. Banford ◽  
Ed Pendleton

Sign in / Sign up

Export Citation Format

Share Document