Pressure Distributions on Sails Investigated Using Three Methods: On-Water Measurements, Wind-Tunnel Measurements, and Computational Fluid Dynamics

2011 ◽  
Author(s):  
Ignazio Maria Viola ◽  
Richard G. J. Flay

The main results of a two-year project aimed at comparing full-scale tests, wind tunnel tests, and numerical analysis predictions are presented. Pressure measurements were obtained from both full-scale tests and wind-tunnel tests, in upwind and downwind conditions. The upwind wind tunnel test condition was modelled using a Vortex Lattice code, while the downwind wind-tunnel test was modelled using a Navier-Stokes code. The pressures obtained from the three different methods are compared on three horizontal sections of the headsail, mainsail, and asymmetric spinnaker. In general the pressures from the three experiments showed good agreement. In particular, very good agreement was obtained between the numerical computations and the wind tunnel test results. Conversely, the results from the downwind full-scale pressure measurements showed less similarity due to a slightly tightened trim being used for the spinnaker in the on-water tests. Full-scale tests allow the action of unsteadiness due to the wind, wave and yacht movements to affect the results. This unstable environment caused the asymmetric spinnaker to move around, and a tightened trim was required to prevent the spinnaker from collapsing.

2021 ◽  
Vol 1201 (1) ◽  
pp. 012007
Author(s):  
I. Kusano ◽  
E. Cheynet ◽  
J. B. Jakobsen ◽  
J. Snæbjörnsson

Abstract Assessing the aerodynamic characteristics of long-span bridges is fundamental for their design. Depending on the terrain complexity and local wind conditions, episodes of large angles of attack (AoA) of 15° may be observed. However, such large AoAs ( above 10°) are often overlooked in the design process. This paper studies the aerodynamics properties of a flow around a single-box girder for a wide range of AoAs, from –20° to 20°, using numerical simulations. The simulations are based on a 2D unsteady Reynolds-averaged Navier–Stokes (URANS) approach using the k − ω SST turbulence model with a Reynolds number of 1.6 × 105. Numerically obtained aerodynamic static coefficients were compared to wind tunnel test data. The CFD results were generally in good agreement with the wind tunnel tests, especially for small AoAs and positive AoAs. More discrepancies were observed for large negative AoA, likely due to the limitation of modelling 3D railings with 2D simulations. The simulated velocity deficit downstream of the deck was consistent with the one measured in full-scale using short-range Doppler wind lidar instruments. Finally, the Strouhal number from the CFD simulations were in agreement with the value obtained from the full-scale data.


Author(s):  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The application of an incompressible Reynolds Averaged Navier-Stokes solver to cases from the NREL/NASA Ames wind tunnel test is described. Six cases of the NREL PHASE-VI rotor in the upwind configuration under zero yaw and zero degrees tip pitch are computed. Favorable comparison of the computed results with measurements in the form of shaft torque, root moments, spanwise force distributions, and pressure distributions are shown. The good agreement documents the feasibility of 3D CFD computations in connection with prediction of the performance of new rotors. Additionally it is shown how CFD computations can be used to determine the three dimensional effects in rotor flows.


2002 ◽  
Vol 90 (12-15) ◽  
pp. 1817-1829 ◽  
Author(s):  
Morimasa Watakabe ◽  
Masamiki Ohashi ◽  
Hisashi Okada ◽  
Yasuo Okuda ◽  
Hitomi Kikitsu ◽  
...  

Author(s):  
Jonathan Vlastuin ◽  
Clément Dejeu ◽  
Anthony Louet ◽  
Jérôme Talbotec ◽  
Ingrid Lepot ◽  
...  

For several years, Safran has been involved in the design and optimization of contra rotating open rotors. This innovative architecture is known for allowing drastic reduction in fuel burn, but its development is facing complex technological challenges such as acoustics, aerodynamics, and weight penalty due to the mechanical complexity of an Open Rotor. Since 2010, Safran has been developing the experimental test bench HERA (1/5 mock-up scale) to improve the understanding of the complex aerodynamics and acoustics phenomena involved in the counter rotating propellers configuration. Isolated and installed low speed and high speed wind tunnel campaigns, including PIV measurements have been extremely helpful in defining design guidelines for full scale open rotor specification. These tests have been used as CFD feed-back among other purposes. An iterative process involving CFD optimization (in close collaboration with Cenaero) and wind tunnel test campaigns has been developed over the last 4 years and has led to the definition of an innovative design strategy, which has been successfully tested during the process of the full scale counter rotating propellers design for the SAGE2 ground test demonstrator engine. This phase has evidenced the absolute necessity of a multi-disciplinary design method when it comes to full scale and “rig-ready” design. Ensuring high propulsive efficiency and at the same time, minimizing the acoustic level, while maintaining severe mechanical constraints such as weight, inertia and proper dynamic positioning under control, requires a dedicated and integrated “all inclusive” design process. The aim of this paper is to present the design methodology and some of the wind tunnel tests results carried out over the last 4 years, which have led to the definition of a novel multidisciplinary design methodology that involves CFD, FEM and acoustics.


2012 ◽  
Vol 56 (04) ◽  
pp. 197-206
Author(s):  
Ignazio Maria Viola ◽  
Richard G. J. Flay

Pressures on three horizontal sections of a downwind sail were measured for several wind directions and sail trims. The pressure distributions were compared with wind tunnel tests; similarities and differences were found, the latter as a result of the dynamic effects, which were not modeled in the wind tunnel. A pressure distribution at the head of the spinnaker resembling that from a delta wing was measured at an apparent wind angle of 120°.


2013 ◽  
Vol 361-363 ◽  
pp. 1105-1109
Author(s):  
Chun Sheng Shu

Liujiaxia Bridge is a truss stiffening girder suspension bridge which span is 536m, and it is the narrowest suspension bridge with the same scale, so the problems of flutter stability are prominent. Results of wind tunnel test show that its critical velocity cannot meet the requirements without any aerodynamic measures. Based on above considerations, seven kinds of aerodynamic measures are proposed, respectively wind tunnel tests are conducted. The results show that the program, in which the upper central stable board is 1.12m high and the under central stable board is 1.28m high, can meet the requirements. The results of this study provide some references to solving the problem of wind-resistant stability of narrow deck suspension bridge.


2011 ◽  
Vol 130-134 ◽  
pp. 103-107 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Shui Liang Wang ◽  
Yan Sun

It is crucial measuring position and attitude of model to gain the precise and accurate data in wind tunnel tests. The model displacement videogrammetric measurement (MDVM) system and its key techniques such as the exterior orientation with big rotation angles and large-overlap, mark points, image processing and calibration based on the known distances are therefore presented. The practice example in Asia's largest (2.4m) transonic wind tunnel has demonstrated the MDVM system and its key techniques are correct and feasible, and they have application value.


1994 ◽  
Vol 116 (1) ◽  
pp. 14-22 ◽  
Author(s):  
M. G. Dunn ◽  
J. Kim ◽  
K. C. Civinskas ◽  
R. J. Boyle

Time-averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row and the first-stage blade row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. These measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the component. Stanton-number distributions are also reported for the second-stage vane at 50 percent span. A shock tube is used as a short-duration source of heated and pressurized air to which the turbine is subjected. Platinum thin-film gages are used to obtain the heat-flux measurements and miniature silicone-diaphragm pressure transducers are used to obtain the surface pressure measurements. The first-stage vane Stanton number distributions are compared with predictions obtained using a quasi-three dimensional Navier–Stokes solution and a version of STAN5. This same N–S technique was also used to obtain predictions for the first blade and the second vane.


Sign in / Sign up

Export Citation Format

Share Document