Molecular Docking Analysis of Triazole Analogues as Inhibitors of Human Neutrophil Elastase (HNE), Matrix Metalloproteinase (MMP 2 and MMP 9) and Tyrosinase

2020 ◽  
Vol 13 (6) ◽  
pp. 2777
Author(s):  
V. Vijayakumar ◽  
N. Radhakrishnan ◽  
P. Vasantha-Srinivasan
2020 ◽  
Vol 11 ◽  
Author(s):  
Agnieszka Sowinska ◽  
Merlin Rensing ◽  
Lena Klevenvall ◽  
Manoj Neog ◽  
Peter Lundbäck ◽  
...  

Extracellular HMGB1 acts as an alarmin in multiple autoimmune diseases. While its release and functions have been extensively studied, there is a substantial lack of knowledge regarding HMGB1 regulation at the site of inflammation. Herein we show that enzymes present in arthritis-affected joints process HMGB1 into smaller peptides in vitro. Gel electrophoresis, Western blotting and mass spectrometry analyses indicate cleavage sites for human neutrophil elastase, cathepsin G, and matrix metalloproteinase 3 within the HMGB1 structure. While human neutrophil elastase and matrix metalloproteinase 3 might alter the affinity of HMGB1 to its receptors by cleaving the acidic C-terminal tail, cathepsin G rapidly and completely degraded the alarmin. Contrary to a previous report we demonstrate that HMGB1 is not a substrate for dipeptidyl peptidase IV. We also provide novel information regarding the presence of these proteases in synovial fluid of juvenile idiopathic arthritis patients. Correlation analysis of protease levels and HMGB1 levels in synovial fluid samples did not, however, reveal any direct relationship between the recorded levels. This study provides knowledge of proteolytic processing of HMGB1 relevant for the regulation of HMGB1 during inflammatory disease.


2020 ◽  
Vol 1 (2) ◽  
pp. 65-71
Author(s):  
Amir Taherkhani ◽  
Zahra Khamverdi ◽  
Mahdi Sayafi ◽  
Shirin Moradkhani

Background: Foeniculum vulgare (Fennel) has a wide range of applications. Previous studies revealed the presence of different compounds in the essential oil (EO) of fennel fruit (FF). Matrix metalloproteinase-13 (MMP-13) participates in several human biological processes including the degradation of extracellular matrix proteins, activation or degradation of some significant regulatory proteins, and tumor cell invasion. Furthermore, the up-regulation of MMP-13 is associated with many disorders such as tooth caries and periodontitis, as well as the degradation of enamel and tissues around the implant and Alzheimer’s disease. Therefore, the aims of the present study were to investigate the compounds of the EO of FF (EOFF) from the Hamedan district, along with performing molecular docking analysis to assess the binding affinity of four compounds originated from F. vulgare with the MMP-13. Finally, the study focused on evaluating the pharmacokinetic and toxicity characteristics of the compounds. Methods: Hydrodistillation method was used for obtaining the EO from FF. Then, gas chromatography-mass spectrometry was applied to identify the components of the EO. Molecular docking analysis was carried out using AutoDock software. Eventually, the pharmacokinetic and toxicity features of compounds were evaluated using bioinformatics webservers. Results: The results revealed the presence of fourteen compounds, among which e-anethole (86.86%), fenchone (743%), estragole (165%), and thymol (1.21%) were the main components. Based on the results, thymol, fenchone, e-anethole, and estragole could potentially bind to the MMP-13 active site, respectively. Conclusion: Regardless of several studies on the chemical constituents of EOFF, the subject has its own pharmacognostical importance. According to computational studies, EOFF has the potential for study on several human disorders such as cancer, tooth decay, and Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document