Chemical Soil Quality Indicators in Relation to Topographic Positions in the North-Western Himalayas, India

2019 ◽  
Vol 7 (1) ◽  
pp. 39
Author(s):  
Vijay Singh Meena ◽  
Tilak Mondal ◽  
Suman Roy ◽  
Ram Prakash Yadav ◽  
Sanjay Kumar Arya ◽  
...  
Resources ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 129
Author(s):  
Misagh Parhizkar ◽  
Mahmood Shabanpour ◽  
Demetrio Antonio Zema ◽  
Manuel Esteban Lucas-Borja

Rill detachment capacity is a key parameter in concentrated flow erosion. Rill erosion generally turns into gully erosion with severe environmental impacts. Changes in land use and human activities can have heavy effects in rill formation, particularly in forests subject to deforestation; soil morphology plays a significant role in these effects. However, literature reports few studies about rill detachment rates and their implications on soil quality in forest and deforested soils with different morphological characteristics. To fill these gaps, this study has evaluated the rill detachment capacity (Dc) and the main soil quality indicators in three areas (upper, middle and lower slope) of forest and deforested (for 10 years) hillslopes exposed to the north and south in Northern Iran. The variations of Dc have been measured on soil samples under laboratory conditions through a flume experiment at three slope gradients (12 to 19%) and five flow rates (0.22 to 0.67 L m−1 s−1) with four replications. The large and significant (p < 0.05) difference (about 70%) detected for Dc between forest and deforested hillslopes was associated to the higher organic matter content of forest areas; as a consequence, these areas also showed higher aggregate stability, porosity, root weight density, microbial respiration and available water. In the deforested hillslopes exposed to the south, the soil erodibility was higher by 12% compared to those exposed to the north. The differences in the monitored soil quality indicators were instead less noticeable and not always significant (p < 0.05). Conversely, Dc did not significantly change (p < 0.05) among the upper, middle and lower hillslope areas investigated in this study. Simple but accurate models to predict the rill detachment capacity, erodibility and critical shear stress of soils from indicators of soil quality or the unit stream power using regression equations are suggested. Overall, the results can support land planners in prioritizing the actions for soil conservation in deforested hillslopes exposed to the south as well as in the extensive application of the proposed equations in erosion prediction models.


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2009 ◽  
Vol 40 (1-6) ◽  
pp. 419-434 ◽  
Author(s):  
Evangelia Vavoulidou ◽  
Elisabeth Avramides ◽  
Martin Wood ◽  
Polykarpos Lolos

Sign in / Sign up

Export Citation Format

Share Document