scholarly journals Naval hydrodynamics : boundary layer stability and transition, ship boundary layers and propeller hull interaction, cavitation, geophysical fluid dynamics : twelfth symposium / sponsored by the Office of Naval Research, the David W. Taylor Naval Ship Research and Development Center, and the Naval Studies Board of the National Research Council.

1979 ◽  
Author(s):  
◽  
◽  
◽  
1963 ◽  
Vol 30 (4) ◽  
pp. 481-485 ◽  
Author(s):  
L. N. Howard

This paper gives an expository survey of some of the principal mathematical models which have been used in the theory of rotating fluids, together with a discussion of several explicit examples. Some of these examples are related to geophysical fluid dynamics; others more directly to laboratory studies. In all cases the examples have been selected to illustrate some of the most important physical phenomena which are characteristic of rotating flows and distinguish them from other fluid motions. Physical concepts, such as the Taylor-Proudman effects, the Ekman boundary layer, and Rayleigh’s analogy, which have proved useful in obtaining a general understanding of rotating fluids, are presented and discussed.


2020 ◽  
pp. 1-16 ◽  
Author(s):  
Cihad Delen ◽  
Ugur Can ◽  
Sakir Bal

Resistance and self-propulsion characteristics of a naval ship at full scale have been investigated by using Telfer’s GEOmetrically SIMilar (GEOSIM) method based on the computational fluid dynamics (CFD) approach. For this purpose, first, the resistance forces of the Office of Naval Research Tumblehome (ONRT) hull have been computed at different three model scales by using the overset mesh technique. The full-scale resistance and nominal wake fraction of the ONRT hull have been estimated by using Telfer’s GEOSIM method. Resistance and nominal wake fraction have then been compared with those of CFD at full scale. Later, the self-propulsion characteristics of the ONRT hull have been examined using Telfer’s GEOSIM method based on the CFD approach. Self-propulsion factors at the full-scale hull have been predicted by using the SST k-ω turbulence model to involve 2-degrees of freedom ship motions (heave and pitch). Rotational motion of the propeller has also been simulated by using the rigid body motion technique. The results calculated by Telfer’s GEOSIM method and the 1978 International Towing Tank Conference (ITTC) extrapolation technique have been compared with each other and discussed with those of the CFD approach at full scale. It was found that the full-scale results (both resistance and self-propulsion factors) predicted by Telfer’s GEOSIM method are closer to those of the CFD approach than those of the 1978 ITTC technique. It can be noted that Telfer’s GEOSIM method is fast, robust, and reliable and can be used as an alternative to the 1978 ITTC method for predicting the self-propulsion performance of a full-scale ship.


Sign in / Sign up

Export Citation Format

Share Document