scholarly journals Determination of Thermal Barrier Coatings Layers Optimum Thickness via PSO-SA Hybrid Optimization Method concerning Thermal Stress

2019 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Ali Ghaseminezhad Koushali ◽  
M. Nazari ◽  
Masoud Roudneshin ◽  
2017 ◽  
Vol 62 (3) ◽  
pp. 1433-1437
Author(s):  
A. Jasik

Abstract The paper presents the results of numerical calculations of temperature and thermal stress distribution in thermal barrier coatings deposited by thermal spraying process on the nickel based superalloy. An assumption was made to apply conventional zirconium oxide modified with yttrium oxide (8YSZ) and apply pyrochlore type material with formula La2Zr2O7. The bond coat was made of NiCoCrAlY. Analysis of the distribution of temperature and stresses in ceramic coatings of different thicknesses was performed in the function of bond-coat thickness and the type of ceramic insulation layer. It was revealed that the thickness of NiCrAlY bond-coat has not significant influence on the stress distribution, but there is relatively strong effect on temperature level. The most important factor influenced on stress distribution in TBC system is related with type and properties of ceramic insulation layer.


1995 ◽  
Vol 61 (583) ◽  
pp. 614-619 ◽  
Author(s):  
Yoshiyasu Itoh ◽  
Masashi Takahashi ◽  
Takanari Okamura ◽  
Masao Toyoda

Author(s):  
Mark Van Roode ◽  
Brad Beardsley

Coating porosity is believed to be a critical factor for the thermal conductivity of thermal barrier coatings (TBC’s). A number of different techniques have been used to determine the porosities of thermal barrier coatings for diesel applications as part of a NASA/DOE sponsored study. A comparison is made between methods based on water immersion, optical microscopy, eddy current thickness measurements, and Archimedes principle for TBC porosity determination.


Author(s):  
Grégoire Witz ◽  
Hans-Peter Bossmann

Assessment of ex-service parts is important for the power generation industry. It gives us the opportunity to correlate part conditions to specific operating conditions like fuel used, local atmospheric conditions, operating regime, and temperature load. For assessment of thermal barrier coatings, one of the most valuable pieces of information is the local thermal condition. A method has been developed in Alstom, allowing determination of a thermal barrier coating average surface temperature after engine operation. It is based on the analysis of the phase composition of the thermal barrier coating by the acquisition of an X-ray diffraction spectrum of the coating surface, and its analysis using Rietveld refinement. The method has been validated by comparing its outcome to thermal models and base metal temperature mapping data. It is used for assessment of combustor and turbine coatings with various purposes: Determination of remnant coating life, building of lifing models, or determination of the coating degradation mechanisms under some specific operating conditions. Examples will be presented showing applications of this method.


Sign in / Sign up

Export Citation Format

Share Document