scholarly journals Relationship between the Effect of Medial Rotation of the Foot Axis by Ankle Dorsiflexion and the Ability to Visualize the Femoral Neck Axis in the Hip Joint Anterio-posterior Radiography: Evaluation by Magnetic Resonance Images

2012 ◽  
Vol 68 (5) ◽  
pp. 584-592
Author(s):  
Takashi Hashido ◽  
Tsukasa Doi ◽  
Hiroaki Matsuzawa ◽  
Kiyosumi Kawamoto
2005 ◽  
Vol 99 (2) ◽  
pp. 715-722 ◽  
Author(s):  
Theodore F. Towse ◽  
Jill M. Slade ◽  
Ronald A. Meyer

The signal intensity (SI) in gradient-echo, echo-planar magnetic resonance images (repetition time/echo time = 1,000/40) of anterior tibialis muscle in active [estimated energy expenditure 42.4 ± 3.7 (SD), n = 8] vs. sedentary (32.3 ± 0.6 kcal·kg−1·day−1, n = 8) young adult (18–34 yr old) human subjects was measured after single, 1-s-duration maximum voluntary ankle dorsiflexion contractions. There was no difference between groups in anterior tibial muscle cross-sectional area or peak force. In both groups there was a transient increase in anterior tibialis muscle SI, which peaked 5–7 s after the end of each contraction. The magnitude of the SI transient was over threefold greater [5.5 ± 1.0 (SE) vs. 1.5 ± 0.4%] and persisted twice as long (half-recovery time 5.4 ± 0.4 vs. 2.7 ± 0.3 s) in the active subjects. In the same subjects, blood flow in popliteal, anterior tibial, and posterior tibial arteries was measured by cardiac-gated CINE magnetic resonance angiography before and after 2 min of dynamic, repetitive ankle dorsiflexion exercise. There was no difference between groups in resting or postexercise flow in anterior tibial artery, although popliteal and posterior tibial artery flow after exercise tended to be greater in the active group. The results indicate that transient hyperemia and oxygenation in muscle after single contractions are enhanced by chronic physical activity to a greater extent than peak muscle blood flow.


2019 ◽  
Vol 48 (5) ◽  
pp. 449-454
Author(s):  
Joanna Głodek ◽  
Kamila Milewska ◽  
Angelika Tobolska ◽  
Łukasz Grabarczyk ◽  
Wojciech Maksymowicz ◽  
...  

2014 ◽  
Vol 18 (3) ◽  
pp. 567-578 ◽  
Author(s):  
Shekhar S. Chandra ◽  
Ying Xia ◽  
Craig Engstrom ◽  
Stuart Crozier ◽  
Raphael Schwarz ◽  
...  

Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2004 ◽  
Vol 30 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Lori Marino ◽  
Keith Sudheimer ◽  
D. Ann Pabst ◽  
William A. Mclellan ◽  
Saima Arshad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document