scholarly journals Computer aided epitope design as a peptide vaccine component against Lassa virus

2017 ◽  
Vol 13 (12) ◽  
pp. 417-429 ◽  
Author(s):  
Ar-Rafi Md. Faisal ◽  
◽  
Syed Hassan Imtiaz ◽  
Tasnim Zerin ◽  
Tania Rahman ◽  
...  
Author(s):  
Sifat Bin Sayed ◽  
Zulkar Nain ◽  
Faruq Abdullah ◽  
Md. Shakil Ahmed khan ◽  
Zahurul Haque ◽  
...  

Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL=8 and NHTL=6) and B-cell (NLBL=4) epitopes from each LASV-derived protein with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor (TLR2) showed binding efficiency followed by dynamic simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.


Author(s):  
Sifat Bin Sayed ◽  
Zulkar Nain ◽  
Faruq Abdullah ◽  
Md. Shakil Ahmed khan ◽  
Zahurul Haque ◽  
...  

Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL=8 and NHTL=6) and B-cell (NLBL=4) epitopes from each LASV-derived protein with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor (TLR2) showed binding efficiency followed by dynamic simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


PsycCRITIQUES ◽  
2007 ◽  
Vol 52 (44) ◽  
Author(s):  
Benjamin M. Ogles
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document