scholarly journals X-ray Computed Tomography Data ofAdditive Manufacturing Metrology Testbed (AMMT) Parts: “Overhang Part X4”

Author(s):  
Max Praniewicz ◽  
Brandon Lane ◽  
Felix Kim ◽  
Christopher Saldana

This document provides details on the data and files generated from post-build X-ray computedtomography (XCT) measurements of the four parts built as part of the “Overhang Part X4” dataset. The “Overhang Part X4” dataset was a three-dimensional (3D) additive manufacturing (AM) build performed on the Additive Manufacturing Metrology Testbed (AMMT) by Ho Yeung and Brandon Lane on June 28, 2019. The files discussed in this document include image sequences for each part, stereolithography files (.STL) of the surface data extracted from XCT. This data is one of a set of “AMMT Process Monitoring Datasets”, as part of the Metrology for Real-Time Monitoring of Additive Manufacturing project at the National Institute of Standards and Technology (NIST). In-situ sensor data, part design, build command and scan strategy data, materials, and associated metadata for this build are described in Ref. [1]. Readers should refer to the AMMT datasets web page for updates.

Author(s):  
Brandon Lane ◽  
Ho Yeung

This document provides details on the files available in the dataset “Overhang Part X4” pertaining to a three-dimensional (3D) additive manufacturing (AM) build performed on the Additive Manufacturing Metrology Testbed (AMMT) by Ho Yeung and Brandon Lane on June 28, 2019. The files include the input command files, materials data, in-situ process monitoring data, and metadata. This data is one of a set of “AMMT Process Monitoring Datasets”, as part of the Metrology for Real-Time Monitoring of Additive Manufacturing project at the National Institute of Standards and Technology (NIST). Ex-situ part characterization data, including X-ray computed tomography (XCT) measurements, will be provided as it is made available. Readers should refer to the AMMT datasets web page for updates.


2018 ◽  
Vol 25 (6) ◽  
pp. 1774-1779
Author(s):  
Gustavo José Querino de Vasconcelos ◽  
Eduardo Xavier Miqueles ◽  
Gabriel Schubert Ruiz Costa

X-ray computed tomography (CT) is an imaging technique intended to obtain the internal structure and three-dimensional representation of a sample. In general, parallel-beam CT reconstruction algorithms require a precise angular alignment and knowledge of the exact axis of rotation position. Highly brilliant X-ray sources with ever-increasing data-acquisition rates demand optimized alignment techniques to avoid compromising in situ data analysis. This paper presents a method to automatically align the angular orientation and linear position of the rotation axis in a tomography setup, correlating image features from different X-ray projections.


2014 ◽  
Vol 13 (8) ◽  
pp. vzj2014.03.0024 ◽  
Author(s):  
Nicolai Koebernick ◽  
Ulrich Weller ◽  
Katrin Huber ◽  
Steffen Schlüter ◽  
Hans-Jörg Vogel ◽  
...  

1997 ◽  
Vol 189 (2) ◽  
pp. 167-179 ◽  
Author(s):  
D.A. Heeraman ◽  
J.W. Hopmans ◽  
V. Clausnitzer

2013 ◽  
Vol 53 (7) ◽  
pp. 1265-1275 ◽  
Author(s):  
P. Leplay ◽  
J. Réthoré ◽  
S. Meille ◽  
M.-C. Baietto ◽  
J. Adrien ◽  
...  

2021 ◽  
Author(s):  
Katherine A. Wolcott ◽  
Guillaume Chomicki ◽  
Yannick M. Staedler ◽  
Krystyna Wasylikowa ◽  
Mark Nesbitt ◽  
...  

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


Sign in / Sign up

Export Citation Format

Share Document