Groundwater Exploration in Ago-Iwoye Area of Southwestern Nigeria, using Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity Methods

Author(s):  
Bayewu O. O. ◽  
Olountola M.O. ◽  
Mosuro G.O. ◽  
Watabuni F.G.
2016 ◽  
Vol 63 (4) ◽  
pp. 237-250 ◽  
Author(s):  
Cyril Okpoli ◽  
Raphael Tijani

AbstractVery low frequency (VLF) was used to assess variations in overburden composition, bedrock lithology and the concealed basement structures within the bedrock of Owena Dam in Igbara-Oke of the Precambrian Basement Complex of Southwestern Nigeria. Five VLF-electromagnetic (EM) traverses were occupied at 5 m intervals. The VLF normal and filtered real component anomalies identify major geological interfaces suspected to be faults/fractured zones. The points of crossover between the real and imaginary components delineate the fractured zones, which were identified as areas of possible seepage (piping and sloughing). The internal erosion (permeability) of soil mass eventually leads to the formation of an open conduit in the soil, which may lead to failure of the embankment/dam. The fractured zones are suspected to be present at all traverses. In total, 21 fractured zones were identified along the dam embankment, with the deepest occurrence at Traverse 5. These seepage zones cause heterogeneity in the subsurface composition, which could lead to dam failure. The result of the study suggests that VLF is an adequate method of monitoring seepages in embankment dams.


Landslides ◽  
2009 ◽  
Vol 7 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Shashi Prakash Sharma ◽  
K. Anbarasu ◽  
Saibal Gupta ◽  
A. Sengupta

2019 ◽  
Vol 49 (2) ◽  
pp. 181-194
Author(s):  
Youssef Ait Bahammou ◽  
Ahmed Benamara ◽  
Abdellah Ammar ◽  
Ibrahim Dakir

Abstract Resistivity Profiling and Very Low Frequency (VLF) electromagnetic methods were introduced to study fracture zones detection in Zaouia Jdida locality, within the Errachidia basin. The Horizontal Profiling was conducted in Wenner-α array, with AB = 300 m and profile lines oriented NW–SE and NE–SW. The resistivity measurements were taken using MAE advanced geophysics instruments. The VLF profiles were implanted with the length reaches 1000 m and profile lines oriented in NE–SW direction. The VLF measurements were collected using T-VLF iris instrument and the data filtering was done using KHFFILT software. Two filters, Karous-Hjelt and Fraser, were applied to the real component of the secondary electromagnetic field. The qualitative interpretation of resistivity results, showed the presence of subsurface targets; fracture zones were detected at 70m, 240m and 450m positions along the profile P1, at 180m, 340m and 450m positions from the profile P2. The semi-quantitative interpretation of VLF results revealed the presence of two principal fracture zones at L3 and L5 locations, oriented NW–SE, at a depth range of 30 m to 60 m. The VLF anomaly observed at L3 location is confirmed by the resistivity measurements from the profile P1 (at 70m station). The identified fractures represent the potential zones for groundwater supply and then will have an implication on storage and movement of groundwater in the prospect area.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
A. A. Alabi ◽  
S. A. Ganiyu ◽  
O. A. Idowu ◽  
A. F. Ogabi ◽  
O. I. Popoola

AbstractWater is essential for livelihood, development, and industrial growth. Its exploration in sufficient quantity is required where it does not freely occur on the surface. This research was aimed to delineate aquifer regions and provide information on the subsurface lithology of Moloko-Asipa Southwestern Nigeria. A combination of eight traverses investigated with very low frequency electromagnetic (VLF-EM) method at 5 m constant sampling interval and ten vertical electrical sounding (VES) were carried out in the survey. Measurements from the VLF-EM survey were processed with Karous and Hjelt filtering to give the resistivity contrast across the selected profiles. The VES data processing involved an automatic approximation of the initial resistivity and thickness of the geoelectric layers with IPI2Win and further filtering by WinResist iteration. Estimation of Dar-Zarrouk parameters was also employed to investigate the aquifer protective capacity of the area. The processed VLF-EM results showed the geology of the area to an average depth of 25 m. The geoelectric section of the VES data revealed minimum of 3 layers from sandy top soil to weathered layer and fresh basement with an average resistivity values of 1,816, 926 and 17,503 Ωm, respectively. The integration of VLF-EM and VES in the investigation revealed that the potential for groundwater exploration in the study area is poor due to the thin nature of the weathered layer and its shallow depth to basement. The aquifer protective capacity of the area was likewise inferred to be poor.


Sign in / Sign up

Export Citation Format

Share Document