Integration of Electrical Resistivity, Ground-Penetrating Radar, and Very Low-Frequency Electromagnetic Induction Surveys to Help Map Groundwater Contamination Produced by Hydrocarbons Leaking from Underground Storage Tanks

1998 ◽  
Vol 5 (2) ◽  
pp. 61-68 ◽  
Author(s):  
ALVIN K. BENSON ◽  
NATHAN BRETT MUSTOE
Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Allan Haas ◽  
Dale F. Rucker ◽  
Marc T. Levitt

Industrialized sites pose challenges for conducting electrical resistivity geophysical surveys, as the sites typically contain metallic infrastructure that can mask electrolytic-based soil and groundwater contamination. The Hanford site in eastern Washington State, USA, is an industrialized site with underground storage tanks, piping networks, steel fencing, and other potentially interfering infrastructure that could inhibit the effectiveness of electrical resistivity tomography (ERT) to map historical and monitor current waste releases. The underground storage tanks are the largest contributor by volume to subsurface infrastructure and can be classified as reinforced concrete structures with an internal steel liner. Directly measuring the effective value for the electrical resistivity of the tank, i.e., the combination of individual components that comprise the tank’s shell, is not reasonably possible because they are buried and dangerously radioactive. Therefore, we indirectly assess the general resistivity of the tanks and surrounding infrastructure by developing synthetic ERT models with a parametric forward modeling study using a wide range of resistivity values from 1×10−6 to 1×104 ohm-m, which are equivalent to steel and dry rock, respectively. The synthetic models used the long-electrode ERT method (LE-ERT), whereby steel cased metallic wells surrounding the tanks are used as electrodes. The patterns and values of the synthetic tomographic models were then compared to LE-ERT field data from the AX tank farm at the Hanford site. This indirect method of assessing the effective resistivity revealed that the reinforced concrete tanks are electrically resistive and the accompanying piping infrastructure has little influence on the overall resistivity distribution when using electrically based geophysical methods for characterizing or monitoring waste releases. Our findings are consistent with nondestructive testing literature that also shows reinforced concrete to be generally resistive.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. H115-H132 ◽  
Author(s):  
Diego Domenzain ◽  
John Bradford ◽  
Jodi Mead

Recovering material properties of the subsurface using ground-penetrating radar (GPR) data of finite bandwidth with missing low frequencies and in the presence of strong attenuation is a challenging problem. We have adopted three nonlinear inverse methods for recovering electrical conductivity and permittivity of the subsurface by joining GPR multioffset and electrical resistivity (ER) data acquired at the surface. All of the methods use ER data to constrain the low spatial frequency of the conductivity solution. The first method uses the envelope of the GPR data to exploit low-frequency content in full-waveform inversion and does not assume structural similarities of the material properties. The second method uses cross gradients to manage weak amplitudes in the GPR data by assuming structural similarities between permittivity and conductivity. The third method uses the envelope of the GPR data and the cross gradient of the model parameters. By joining ER and GPR data, exploiting low-frequency content in the GPR data, and assuming structural similarities between the electrical permittivity and conductivity, we are able to recover subsurface parameters in regions where the GPR data have a signal-to-noise ratio close to one.


Geoderma ◽  
2013 ◽  
Vol 207-208 ◽  
pp. 310-322 ◽  
Author(s):  
François Jonard ◽  
Mohammad Mahmoudzadeh ◽  
Christian Roisin ◽  
Lutz Weihermüller ◽  
Frédéric André ◽  
...  

1988 ◽  
Vol 10 (3-4) ◽  
pp. 5-20 ◽  
Author(s):  
Janet Fitchen

Chemical contamination of groundwater has become increasingly prevalent in the U.S. Once thought to be safe from pollution, the underground aquifers that supply drinking water to about half of the U.S. population are now known to be vulnerable to contamination from leaking landfills, waste lagoons, underground storage tanks, improper use of agricultural chemicals, and various industrial operations. Manufactured chemical compounds, including industrial degreasers and solvents, as well as gasoline, pesticides and fertilizers (in all, over 700 synthetic organic chemicals) have seeped down through the soil to the aquifers and been detected in ground water. Nearly every state has identified cases of contamination serious enough to require closing of some public or private supply wells.


Sign in / Sign up

Export Citation Format

Share Document